IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31665-x.html
   My bibliography  Save this article

Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels

Author

Listed:
  • Binglu Zhang

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

  • Qisi Zhu

    (University of Science and Technology Beijing)

  • Chi Xu

    (Nanjing University of Science and Technology)

  • Changtai Li

    (University of Science and Technology Beijing)

  • Yuan Ma

    (University of Science and Technology Beijing)

  • Zhaoxiang Ma

    (Yantai University)

  • Sinuo Liu

    (University of Science and Technology Beijing)

  • Ruiwen Shao

    (Beijing Institute of Technology)

  • Yuting Xu

    (South China University of Technology)

  • Baolong Jiang

    (University of Science and Technology Beijing)

  • Lei Gao

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

  • Xiaolu Pang

    (University of Science and Technology Beijing)

  • Yang He

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

  • Guang Chen

    (Nanjing University of Science and Technology)

  • Lijie Qiao

    (University of Science and Technology Beijing
    University of Science and Technology Beijing)

Abstract

Hydrogen is well known to embrittle high-strength steels and impair their corrosion resistance. One of the most attractive methods to mitigate hydrogen embrittlement employs nanoprecipitates, which are widely used for strengthening, to trap and diffuse hydrogen from enriching at vulnerable locations within the materials. However, the atomic origin of hydrogen-trapping remains elusive, especially in incoherent nanoprecipitates. Here, by combining in-situ scanning Kelvin probe force microscopy and aberration-corrected transmission electron microscopy, we unveil distinct scenarios of hydrogen-precipitate interaction in a high-strength low-alloyed martensitic steel. It is found that not all incoherent interfaces are trapping hydrogen; some may even exclude hydrogen. Atomic-scale structural and chemical features of the very interfaces suggest that carbon/sulfur vacancies on the precipitate surface and tensile strain fields in the nearby matrix likely determine the hydrogen-trapping characteristics of the interface. These findings provide fundamental insights that may lead to a better coupling of precipitation-strengthening strategy with hydrogen-insensitive designs.

Suggested Citation

  • Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31665-x
    DOI: 10.1038/s41467-022-31665-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31665-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31665-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dierk Raabe & C. Cem Tasan & Elsa A. Olivetti, 2019. "Strategies for improving the sustainability of structural metals," Nature, Nature, vol. 575(7781), pages 64-74, November.
    2. Chien-Chun Chen & Chun Zhu & Edward R. White & Chin-Yi Chiu & M. C. Scott & B. C. Regan & Laurence D. Marks & Yu Huang & Jianwei Miao, 2013. "Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution," Nature, Nature, vol. 496(7443), pages 74-77, April.
    3. Song Tang & Tongzheng Xin & Wanqiang Xu & David Miskovic & Gang Sha & Zakaria Quadir & Simon Ringer & Keita Nomoto & Nick Birbilis & Michael Ferry, 2019. "Precipitation strengthening in an ultralight magnesium alloy," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
    5. Suihe Jiang & Hui Wang & Yuan Wu & Xiongjun Liu & Honghong Chen & Mengji Yao & Baptiste Gault & Dirk Ponge & Dierk Raabe & Akihiko Hirata & Mingwei Chen & Yandong Wang & Zhaoping Lu, 2017. "Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation," Nature, Nature, vol. 544(7651), pages 460-464, April.
    6. K. Du & M. Zhang & C. Dai & Z. N. Zhou & Y. W. Xie & Z. H. Ren & H. Tian & L. Q. Chen & Gustaaf Tendeloo & Z. Zhang, 2019. "Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    7. Ying Yang & Tianyi Chen & Lizhen Tan & Jonathan D. Poplawsky & Ke An & Yanli Wang & German D. Samolyuk & Ken Littrell & Andrew R. Lupini & Albina Borisevich & Easo P. George, 2021. "Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy," Nature, Nature, vol. 595(7866), pages 245-249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yong-Qiang & Song, Wei & Wang, Han-Bing & Qi, Jian-Tao & Zeng, Rong-Chang & Ren, Hao & Jiang, Wen-Chun & Meng, Hui-Bo & Li, Yu-Xing, 2024. "Advances in reducing hydrogen effect of pipeline steels on hydrogen-blended natural gas transportation: A systematic review of mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Cheng, Guang & Wang, Xiaoli & Chen, Kaiyuan & Zhang, Yang & Venkatesh, T.A. & Wang, Xiaolin & Li, Zunzhao & Yang, Jing, 2023. "Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Ke Chen & Guo Li & Xiaoqun Gong & Qinjuan Ren & Junying Wang & Shuang Zhao & Ling Liu & Yuxing Yan & Qingshan Liu & Yang Cao & Yaoyao Ren & Qiong Qin & Qi Xin & Shu-Lin Liu & Peiyu Yao & Bo Zhang & Ji, 2024. "Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong Li & Tianwei Liu & Shiteng Zhao & Yan Chen & Junhua Luan & Zengbao Jiao & Robert O. Ritchie & Lanhong Dai, 2023. "Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Philipp M. Pelz & Sinéad M. Griffin & Scott Stonemeyer & Derek Popple & Hannah DeVyldere & Peter Ercius & Alex Zettl & Mary C. Scott & Colin Ophus, 2023. "Solving complex nanostructures with ptychographic atomic electron tomography," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    4. Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
    5. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Sixu Wang & Wei Li & Chenguang Deng & Zijian Hong & Han-Bin Gao & Xiaolong Li & Yueliang Gu & Qiang Zheng & Yongjun Wu & Paul G. Evans & Jing-Feng Li & Ce-Wen Nan & Qian Li, 2024. "Giant electric field-induced second harmonic generation in polar skyrmions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Sukanta Mondal & Pratim Kumar Chattaraj, 2023. "Aromatic Clusters and Hydrogen Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
    10. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Khashayar Razghandi & Emad Yaghmaei, 2020. "Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    12. Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
    13. Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    15. Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
    16. Lijuan Yan & Yange Zhang & Jun Liu, 2019. "The Dissociation and Diffusion Features of H2 Molecule on Two Ti Atoms Doped Al(111) Surface," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(3), pages 1-4, March.
    17. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    18. Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
    19. Yu-Tsun Shao & Sujit Das & Zijian Hong & Ruijuan Xu & Swathi Chandrika & Fernando Gómez-Ortiz & Pablo García-Fernández & Long-Qing Chen & Harold Y. Hwang & Javier Junquera & Lane W. Martin & Ramamoort, 2023. "Emergent chirality in a polar meron to skyrmion phase transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31665-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.