IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v575y2019i7781d10.1038_s41586-019-1702-5.html
   My bibliography  Save this article

Strategies for improving the sustainability of structural metals

Author

Listed:
  • Dierk Raabe

    (Max-Planck-Institut für Eisenforschung)

  • C. Cem Tasan

    (Massachusetts Institute of Technology)

  • Elsa A. Olivetti

    (Massachusetts Institute of Technology)

Abstract

Metallic materials have enabled technological progress over thousands of years. The accelerated demand for structural (that is, load-bearing) alloys in key sectors such as energy, construction, safety and transportation is resulting in predicted production growth rates of up to 200 per cent until 2050. Yet most of these materials require a lot of energy when extracted and manufactured and these processes emit large amounts of greenhouse gases and pollution. Here we review methods of improving the direct sustainability of structural metals, in areas including reduced-carbon-dioxide primary production, recycling, scrap-compatible alloy design, contaminant tolerance of alloys and improved alloy longevity. We discuss the effectiveness and technological readiness of individual measures and also show how novel structural materials enable improved energy efficiency through their reduced mass, higher thermal stability and better mechanical properties than currently available alloys.

Suggested Citation

  • Dierk Raabe & C. Cem Tasan & Elsa A. Olivetti, 2019. "Strategies for improving the sustainability of structural metals," Nature, Nature, vol. 575(7781), pages 64-74, November.
  • Handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1702-5
    DOI: 10.1038/s41586-019-1702-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1702-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1702-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Khashayar Razghandi & Emad Yaghmaei, 2020. "Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    4. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Xuyang Zhou & Ali Ahmadian & Baptiste Gault & Colin Ophus & Christian H. Liebscher & Gerhard Dehm & Dierk Raabe, 2023. "Atomic motifs govern the decoration of grain boundaries by interstitial solutes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Farhan Ashraf & Arijit Lodh & Emanuele Pagone & Gustavo M. Castelluccio, 2023. "Revitalising Metallic Materials: A Path towards a Sustainable Circular Economy," Sustainability, MDPI, vol. 15(15), pages 1-17, July.
    7. Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Ali Zakeri & Kenneth S. Coley & Leili Tafaghodi, 2023. "Hydrogen-Based Direct Reduction of Iron Oxides: A Review on the Influence of Impurities," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    9. Mauricio Sánchez-Silva & Jack W. Baker, 2024. "Dynamic Infrastructure Systems: advancing sustainable urbanization and climate change," Environment Systems and Decisions, Springer, vol. 44(3), pages 489-499, September.
    10. Shenghua Wang & Dake Zhang & Wu Wang & Jun Zhong & Kai Feng & Zhiyi Wu & Boyu Du & Jiaqing He & Zhengwen Li & Le He & Wei Sun & Deren Yang & Geoffrey A. Ozin, 2022. "Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Rahmani, Amir & Aboojafari, Roohallah & Bonyadi Naeini, Ali & Mashayekh, Javad, 2024. "Adoption of digital innovation for resource efficiency and sustainability in the metal industry," Resources Policy, Elsevier, vol. 90(C).
    12. Thomas E. Graedel & Alessio Miatto, 2022. "Alloy Profusion, Spice Metals, and Resource Loss by Design," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    13. Jhon Zartha & Gina Orozco & Diana Barreto & Diego García, 2024. "Sustainable Innovation in Organizations: A Look from Processes, Products, and Services," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    14. Roland W. Scholz & Gerald Steiner, 2022. "The role of transdisciplinarity for mineral economics and mineral resource management: coping with fallacies related to phosphorus in science and practice," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(3), pages 745-763, December.
    15. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:575:y:2019:i:7781:d:10.1038_s41586-019-1702-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.