IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34470-8.html
   My bibliography  Save this article

Mechanically derived short-range order and its impact on the multi-principal-element alloys

Author

Listed:
  • Jae Bok Seol

    (Gyeongsang National University)

  • Won-Seok Ko

    (Inha University)

  • Seok Su Sohn

    (Korea University)

  • Min Young Na

    (Korea Institute of Science and Technology)

  • Hye Jung Chang

    (Korea Institute of Science and Technology)

  • Yoon-Uk Heo

    (Pohang University of Science and Technology)

  • Jung Gi Kim

    (Gyeongsang National University)

  • Hyokyung Sung

    (Kookmin University)

  • Zhiming Li

    (Central South University)

  • Elena Pereloma

    (University of Wollongong)

  • Hyoung Seop Kim

    (Pohang University of Science and Technology)

Abstract

Chemical short-range order in disordered solid solutions often emerges with specific heat treatments. Unlike thermally activated ordering, mechanically derived short-range order (MSRO) in a multi-principal-element Fe40Mn40Cr10Co10 (at%) alloy originates from tensile deformation at 77 K, and its degree/extent can be tailored by adjusting the loading rates under quasistatic conditions. The mechanical response and multi-length-scale characterisation pointed to the minor contribution of MSRO formation to yield strength, mechanical twinning, and deformation-induced displacive transformation. Scanning and high-resolution transmission electron microscopy and the anlaysis of electron diffraction patterns revealed the microstructural features responsible for MSRO and the dependence of the ordering degree/extent on the applied strain rates. Here, we show that underpinned by molecular dynamics, MSRO in the alloys with low stacking-fault energies forms when loaded at 77 K, and these systems that offer different perspectives on the process of strain-induced ordering transition are driven by crystalline lattice defects (dislocations and stacking faults).

Suggested Citation

  • Jae Bok Seol & Won-Seok Ko & Seok Su Sohn & Min Young Na & Hye Jung Chang & Yoon-Uk Heo & Jung Gi Kim & Hyokyung Sung & Zhiming Li & Elena Pereloma & Hyoung Seop Kim, 2022. "Mechanically derived short-range order and its impact on the multi-principal-element alloys," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34470-8
    DOI: 10.1038/s41467-022-34470-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34470-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34470-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yinmin Wang & Mingwei Chen & Fenghua Zhou & En Ma, 2002. "High tensile ductility in a nanostructured metal," Nature, Nature, vol. 419(6910), pages 912-915, October.
    2. Evan Ma & Xiaolei Wu, 2019. "Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Ruopeng Zhang & Shiteng Zhao & Jun Ding & Yan Chong & Tao Jia & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2020. "Short-range order and its impact on the CrCoNi medium-entropy alloy," Nature, Nature, vol. 581(7808), pages 283-287, May.
    4. D. B. Miracle, 2019. "High entropy alloys as a bold step forward in alloy development," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    5. Nhung Thi-Cam Nguyen & Peyman Asghari-Rad & Praveen Sathiyamoorthi & Alireza Zargaran & Chong Soo Lee & Hyoung Seop Kim, 2020. "Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Dierk Raabe & C. Cem Tasan & Elsa A. Olivetti, 2019. "Strategies for improving the sustainability of structural metals," Nature, Nature, vol. 575(7781), pages 64-74, November.
    7. Liuliu Han & Fernando Maccari & Isnaldi R. Souza Filho & Nicolas J. Peter & Ye Wei & Baptiste Gault & Oliver Gutfleisch & Zhiming Li & Dierk Raabe, 2022. "A mechanically strong and ductile soft magnet with extremely low coercivity," Nature, Nature, vol. 608(7922), pages 310-316, August.
    8. Xuefei Chen & Qi Wang & Zhiying Cheng & Mingliu Zhu & Hao Zhou & Ping Jiang & Lingling Zhou & Qiqi Xue & Fuping Yuan & Jing Zhu & Xiaolei Wu & En Ma, 2021. "Direct observation of chemical short-range order in a medium-entropy alloy," Nature, Nature, vol. 592(7856), pages 712-716, April.
    9. Tae Jin Jang & Won Seok Choi & Dae Woong Kim & Gwanghyo Choi & Hosun Jun & Alberto Ferrari & Fritz Körmann & Pyuck-Pa Choi & Seok Su Sohn, 2021. "Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Qingqing Ding & Yin Zhang & Xiao Chen & Xiaoqian Fu & Dengke Chen & Sijing Chen & Lin Gu & Fei Wei & Hongbin Bei & Yanfei Gao & Minru Wen & Jixue Li & Ze Zhang & Ting Zhu & Robert O. Ritchie & Qian Yu, 2019. "Tuning element distribution, structure and properties by composition in high-entropy alloys," Nature, Nature, vol. 574(7777), pages 223-227, October.
    12. Qing-Jie Li & Howard Sheng & Evan Ma, 2019. "Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ying Han & Hangman Chen & Yongwen Sun & Jian Liu & Shaolou Wei & Bijun Xie & Zhiyu Zhang & Yingxin Zhu & Meng Li & Judith Yang & Wen Chen & Penghui Cao & Yang Yang, 2024. "Ubiquitous short-range order in multi-principal element alloys," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Cheng-Hsien Yeh & Wen-Dung Hsu & Bernard Haochih Liu & Chan-Shan Yang & Chen-Yun Kuan & Yuan-Chun Chang & Kai-Sheng Huang & Song-Syun Jhang & Chia-Yen Lu & Peter K. Liaw & Chuan-Feng Shih, 2024. "Low-frequency conductivity of low wear high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Wang & Ping Jiang & Fuping Yuan & Xiaolei Wu, 2022. "Chemical medium-range order in a medium-entropy alloy," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    2. Ying Han & Hangman Chen & Yongwen Sun & Jian Liu & Shaolou Wei & Bijun Xie & Zhiyu Zhang & Yingxin Zhu & Meng Li & Judith Yang & Wen Chen & Penghui Cao & Yang Yang, 2024. "Ubiquitous short-range order in multi-principal element alloys," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yang Yang & Sheng Yin & Qin Yu & Yingxin Zhu & Jun Ding & Ruopeng Zhang & Colin Ophus & Mark Asta & Robert O. Ritchie & Andrew M. Minor, 2024. "Rejuvenation as the origin of planar defects in the CrCoNi medium entropy alloy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Qian Zhang & Ranming Niu & Ying Liu & Jiaxi Jiang & Fan Xu & Xuan Zhang & Julie M. Cairney & Xianghai An & Xiaozhou Liao & Huajian Gao & Xiaoyan Li, 2023. "Room-temperature super-elongation in high-entropy alloy nanopillars," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Jingyuan Yan & Sheng Yin & Mark Asta & Robert O. Ritchie & Jun Ding & Qian Yu, 2022. "Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Chang Liu & Jing Rao & Zhongji Sun & Wenjun Lu & James P. Best & Xuehan Li & Wenzhen Xia & Yilun Gong & Ye Wei & Bozhao Zhang & Jun Ding & Ge Wu & En Ma, 2024. "Near-theoretical strength and deformation stabilization achieved via grain boundary segregation and nano-clustering of solutes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Zan Li & Yin Zhang & Zhibo Zhang & Yi-Tao Cui & Qiang Guo & Pan Liu & Shenbao Jin & Gang Sha & Kunqing Ding & Zhiqiang Li & Tongxiang Fan & Herbert M. Urbassek & Qian Yu & Ting Zhu & Di Zhang & Y. Mor, 2022. "A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Xingjia He & Yu Zhang & Xinlei Gu & Jiangwei Wang & Jinlei Qi & Jun Hao & Longpeng Wang & Hao Huang & Mao Wen & Kan Zhang & Weitao Zheng, 2023. "Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Vinícius P. Bacurau & Pedro A. F. P. Moreira & Gustavo Bertoli & Angelo F. Andreoli & Eric Mazzer & Flávio F. Assis & Piter Gargarella & Guilherme Koga & Guilherme C. Stumpf & Santiago J. A. Figueroa , 2024. "Comprehensive analysis of ordering in CoCrNi and CrNi2 alloys," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Chang Liu & Wenjun Lu & Wenzhen Xia & Chaowei Du & Ziyuan Rao & James P. Best & Steffen Brinckmann & Jian Lu & Baptiste Gault & Gerhard Dehm & Ge Wu & Zhiming Li & Dierk Raabe, 2022. "Massive interstitial solid solution alloys achieve near-theoretical strength," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Yue Li & Ye Wei & Zhangwei Wang & Xiaochun Liu & Timoteo Colnaghi & Liuliu Han & Ziyuan Rao & Xuyang Zhou & Liam Huber & Raynol Dsouza & Yilun Gong & Jörg Neugebauer & Andreas Marek & Markus Rampp & S, 2023. "Quantitative three-dimensional imaging of chemical short-range order via machine learning enhanced atom probe tomography," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Xizheng Wang & Yunhao Zhao & Gang Chen & Xinpeng Zhao & Chuan Liu & Soumya Sridar & Luis Fernando Ladinos Pizano & Shuke Li & Alexandra H. Brozena & Miao Guo & Hanlei Zhang & Yuankang Wang & Wei Xiong, 2022. "Ultrahigh-temperature melt printing of multi-principal element alloys," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Linze Li & Bin Ouyang & Zhengyan Lun & Haoyan Huo & Dongchang Chen & Yuan Yue & Colin Ophus & Wei Tong & Guoying Chen & Gerbrand Ceder & Chongmin Wang, 2023. "Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Zhuoran Xia & Xiangyi Huang & Jiaqi Liu & Wen Dai & Liuxiong Luo & Zhaohan Jiang & Shen Gong & Yuyuan Zhao & Zhou Li, 2024. "Designing Ni2MnSn Heusler magnetic nanoprecipitate in copper alloy for increased strength and electromagnetic shielding," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Daniel Utt & Subin Lee & Yaolong Xing & Hyejin Jeong & Alexander Stukowski & Sang Ho Oh & Gerhard Dehm & Karsten Albe, 2022. "The origin of jerky dislocation motion in high-entropy alloys," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Chongle Zhang & Xiangyun Bao & Mengyuan Hao & Wei Chen & Dongdong Zhang & Dong Wang & Jinyu Zhang & Gang Liu & Jun Sun, 2022. "Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Cheng-Hsien Yeh & Wen-Dung Hsu & Bernard Haochih Liu & Chan-Shan Yang & Chen-Yun Kuan & Yuan-Chun Chang & Kai-Sheng Huang & Song-Syun Jhang & Chia-Yen Lu & Peter K. Liaw & Chuan-Feng Shih, 2024. "Low-frequency conductivity of low wear high-entropy alloys," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    19. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Khashayar Razghandi & Emad Yaghmaei, 2020. "Rethinking Filter: An Interdisciplinary Inquiry into Typology and Concept of Filter, Towards an Active Filter Model," Sustainability, MDPI, vol. 12(18), pages 1-34, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34470-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.