IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12864-5.html
   My bibliography  Save this article

Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution

Author

Listed:
  • K. Du

    (Zhejiang University)

  • M. Zhang

    (Zhejiang University)

  • C. Dai

    (Pennsylvania State University)

  • Z. N. Zhou

    (Zhejiang University)

  • Y. W. Xie

    (Zhejiang University)

  • Z. H. Ren

    (Zhejiang University)

  • H. Tian

    (Zhejiang University
    Zhejiang University)

  • L. Q. Chen

    (Pennsylvania State University)

  • Gustaaf Tendeloo

    (University of Antwerp
    Nanostructure Research Centre (NRC) Wuhan University of Technology)

  • Z. Zhang

    (Zhejiang University
    Zhejiang University)

Abstract

Topological structures based on controllable ferroelectric or ferromagnetic domain configurations offer the opportunity to develop microelectronic devices such as high-density memories. Despite the increasing experimental and theoretical insights into various domain structures (such as polar spirals, polar wave, polar vortex) over the past decade, manipulating the topological transformations of polar structures and comprehensively understanding its underlying mechanism remains lacking. By conducting an in-situ non-contact bias technique, here we systematically investigate the real-time topological transformations of polar structures in PbTiO3/SrTiO3 multilayers at an atomic level. The procedure of vortex pair splitting and the transformation from polar vortex to polar wave and out-of-plane polarization are observed step by step. Furthermore, the redistribution of charge in various topological structures has been demonstrated under an external bias. This provides new insights for the symbiosis of polar and charge and offers an opportunity for a new generation of microelectronic devices.

Suggested Citation

  • K. Du & M. Zhang & C. Dai & Z. N. Zhou & Y. W. Xie & Z. H. Ren & H. Tian & L. Q. Chen & Gustaaf Tendeloo & Z. Zhang, 2019. "Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12864-5
    DOI: 10.1038/s41467-019-12864-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12864-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12864-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sixu Wang & Wei Li & Chenguang Deng & Zijian Hong & Han-Bin Gao & Xiaolong Li & Yueliang Gu & Qiang Zheng & Yongjun Wu & Paul G. Evans & Jing-Feng Li & Ce-Wen Nan & Qian Li, 2024. "Giant electric field-induced second harmonic generation in polar skyrmions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Sandhya Susarla & Pablo García-Fernández & Colin Ophus & Sujit Das & Pablo Aguado-Puente & Margaret McCarter & Peter Ercius & Lane W. Martin & Ramamoorthy Ramesh & Javier Junquera, 2021. "Atomic scale crystal field mapping of polar vortices in oxide superlattices," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Feng-Hui Gong & Yun-Long Tang & Yu-Jia Wang & Yu-Ting Chen & Bo Wu & Li-Xin Yang & Yin-Lian Zhu & Xiu-Liang Ma, 2023. "Absence of critical thickness for polar skyrmions with breaking the Kittel’s law," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Mingqiang Li & Tiannan Yang & Pan Chen & Yongjun Wang & Ruixue Zhu & Xiaomei Li & Ruochen Shi & Heng-Jui Liu & Yen-Lin Huang & Xiumei Ma & Jingmin Zhang & Xuedong Bai & Long-Qing Chen & Ying-Hao Chu &, 2022. "Electric-field control of the nucleation and motion of isolated three-fold polar vertices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Ibukun Olaniyan & Iurii Tikhonov & Valentin Väinö Hevelke & Sven Wiesner & Leifeng Zhang & Anna Razumnaya & Nikolay Cherkashin & Sylvie Schamm-Chardon & Igor Lukyanchuk & Dong-Jik Kim & Catherine Dubo, 2024. "Switchable topological polar states in epitaxial BaTiO3 nanoislands on silicon," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Ke Chen & Guo Li & Xiaoqun Gong & Qinjuan Ren & Junying Wang & Shuang Zhao & Ling Liu & Yuxing Yan & Qingshan Liu & Yang Cao & Yaoyao Ren & Qiong Qin & Qi Xin & Shu-Lin Liu & Peiyu Yao & Bo Zhang & Ji, 2024. "Atomic-scale strain engineering of atomically resolved Pt clusters transcending natural enzymes," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Yu-Tsun Shao & Sujit Das & Zijian Hong & Ruijuan Xu & Swathi Chandrika & Fernando Gómez-Ortiz & Pablo García-Fernández & Long-Qing Chen & Harold Y. Hwang & Javier Junquera & Lane W. Martin & Ramamoort, 2023. "Emergent chirality in a polar meron to skyrmion phase transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12864-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.