IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v182y2023ics1364032123002101.html
   My bibliography  Save this article

Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations

Author

Listed:
  • Cheng, Guang
  • Wang, Xiaoli
  • Chen, Kaiyuan
  • Zhang, Yang
  • Venkatesh, T.A.
  • Wang, Xiaolin
  • Li, Zunzhao
  • Yang, Jing

Abstract

The successful realization of a hydrogen economy is crucially dependent on a comprehensive understanding of the effects of hydrogen on the hydrogen infrastructure materials and the development of hydrogen compatible materials with long term reliability. Progress made in recent times in understanding the fundamentals of hydrogen embrittlement mechanisms in metallic materials has been reviewed. Particular emphasis has been made on highlighting the challenges and breakthroughs made in the simulation of hydrogen effects across multiple length-scales using the density functional theory (DFT) method, molecular dynamics (MD) simulations and continuum approaches. The DFT approach is an important approach that provides valuable insights on the effects of hydrogen on a material due to intrinsic factors such as microstructural features and extrinsic factors such as temperature and pressure. MD simulations of hydrogen effects with new interaction potential functions that include more elements (such as Si, Mn, Cr, Ni, etc.) in models with internal defects (such as vacancies) and subjected to strain and temperature, could transform MD simulations from a mechanism studying tool to a property prediction tool. The continuum levels models have the potential to incorporate the effects of microstructural features and predict the mechanical performance of materials, such as deformation and fatigue life under hydrogen environments. Overall, there is positive outlook for developing multi-scale computational tools for designing hydrogen compatible materials and for predicting the performance of metallic materials in hydrogen environments using a bottom-up approach.

Suggested Citation

  • Cheng, Guang & Wang, Xiaoli & Chen, Kaiyuan & Zhang, Yang & Venkatesh, T.A. & Wang, Xiaolin & Li, Zunzhao & Yang, Jing, 2023. "Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002101
    DOI: 10.1016/j.rser.2023.113353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123002101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Sharma, Sunita & Ghoshal, Sib Krishna, 2015. "Hydrogen the future transportation fuel: From production to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1151-1158.
    3. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    4. Yasushi Shibuta & Shinji Sakane & Eisuke Miyoshi & Shin Okita & Tomohiro Takaki & Munekazu Ohno, 2017. "Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Hanley, Emma S. & Deane, JP & Gallachóir, BP Ó, 2018. "The role of hydrogen in low carbon energy futures–A review of existing perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3027-3045.
    7. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    8. Binglu Zhang & Qisi Zhu & Chi Xu & Changtai Li & Yuan Ma & Zhaoxiang Ma & Sinuo Liu & Ruiwen Shao & Yuting Xu & Baolong Jiang & Lei Gao & Xiaolu Pang & Yang He & Guang Chen & Lijie Qiao, 2022. "Atomic-scale insights on hydrogen trapping and exclusion at incoherent interfaces of nanoprecipitates in martensitic steels," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Tarkowski, Radoslaw, 2019. "Underground hydrogen storage: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 86-94.
    10. Huan Zhao & Poulami Chakraborty & Dirk Ponge & Tilmann Hickel & Binhan Sun & Chun-Hung Wu & Baptiste Gault & Dierk Raabe, 2022. "Hydrogen trapping and embrittlement in high-strength Al alloys," Nature, Nature, vol. 602(7897), pages 437-441, February.
    11. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    2. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Jahanbakhsh, Amir & Louis Potapov-Crighton, Alexander & Mosallanezhad, Abdolali & Tohidi Kaloorazi, Nina & Maroto-Valer, M. Mercedes, 2024. "Underground hydrogen storage: A UK perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Sforzini, Matteo & de Santoli, Livio, 2022. "Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Calabrese, M. & Russo, D. & di Benedetto, A. & Marotta, R. & Andreozzi, R., 2023. "Formate/bicarbonate interconversion for safe hydrogen storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    9. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Junior Diamant Ngando Ebba & Mamadou Baïlo Camara & Mamadou Lamine Doumbia & Brayima Dakyo & Joseph Song-Manguelle, 2023. "Large-Scale Hydrogen Production Systems Using Marine Renewable Energies: State-of-the-Art," Energies, MDPI, vol. 17(1), pages 1-23, December.
    11. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    12. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    13. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    14. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    15. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    16. Jafari Raad, Seyed Mostafa & Leonenko, Yuri & Hassanzadeh, Hassan, 2022. "Hydrogen storage in saline aquifers: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    18. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    19. Chen, Scarlett & Kumar, Anikesh & Wong, Wee Chin & Chiu, Min-Sen & Wang, Xiaonan, 2019. "Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies," Applied Energy, Elsevier, vol. 233, pages 321-337.
    20. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:182:y:2023:i:c:s1364032123002101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.