IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31534-7.html
   My bibliography  Save this article

Mode-pairing quantum key distribution

Author

Listed:
  • Pei Zeng

    (Tsinghua University)

  • Hongyi Zhou

    (Tsinghua University)

  • Weijie Wu

    (Tsinghua University)

  • Xiongfeng Ma

    (Tsinghua University)

Abstract

Quantum key distribution — the establishment of information-theoretically secure keys based on quantum physics — is mainly limited by its practical performance, which is characterised by the dependence of the key rate on the channel transmittance R(η). Recently, schemes based on single-photon interference have been proposed to improve the key rate to $$R=O(\sqrt{\eta })$$ R = O ( η ) by overcoming the point-to-point secret key capacity bound with interferometers. Unfortunately, all of these schemes require challenging global phase locking to realise a stable long-arm single-photon interferometer with a precision of approximately 100 nm over fibres that are hundreds of kilometres long. Aiming to address this problem, we propose a mode-pairing measurement-device-independent quantum key distribution scheme in which the encoded key bits and bases are determined during data post-processing. Using conventional second-order interference, this scheme can achieve a key rate of $$R=O(\sqrt{\eta })$$ R = O ( η ) without global phase locking when the local phase fluctuation is mild. We expect this high-performance scheme to be ready-to-implement with off-the-shelf optical devices.

Suggested Citation

  • Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31534-7
    DOI: 10.1038/s41467-022-31534-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31534-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31534-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stefano Pirandola & Riccardo Laurenza & Carlo Ottaviani & Leonardo Banchi, 2017. "Fundamental limits of repeaterless quantum communications," Nature Communications, Nature, vol. 8(1), pages 1-15, April.
    2. Marcos Curty & Feihu Xu & Wei Cui & Charles Ci Wen Lim & Kiyoshi Tamaki & Hoi-Kwong Lo, 2014. "Finite-key analysis for measurement-device-independent quantum key distribution," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
    3. L.-M. Duan & M. D. Lukin & J. I. Cirac & P. Zoller, 2001. "Long-distance quantum communication with atomic ensembles and linear optics," Nature, Nature, vol. 414(6862), pages 413-418, November.
    4. Koji Azuma & Kiyoshi Tamaki & Hoi-Kwong Lo, 2015. "All-photonic quantum repeaters," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. Masahiro Takeoka & Saikat Guha & Mark M. Wilde, 2014. "Fundamental rate-loss tradeoff for optical quantum key distribution," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    6. Koji Azuma & Kiyoshi Tamaki & William J. Munro, 2015. "All-photonic intercity quantum key distribution," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    7. Toshihiko Sasaki & Yoshihisa Yamamoto & Masato Koashi, 2014. "Practical quantum key distribution protocol without monitoring signal disturbance," Nature, Nature, vol. 509(7501), pages 475-478, May.
    8. Yu-Ao Chen & Qiang Zhang & Teng-Yun Chen & Wen-Qi Cai & Sheng-Kai Liao & Jun Zhang & Kai Chen & Juan Yin & Ji-Gang Ren & Zhu Chen & Sheng-Long Han & Qing Yu & Ken Liang & Fei Zhou & Xiao Yuan & Mei-Sh, 2021. "An integrated space-to-ground quantum communication network over 4,600 kilometres," Nature, Nature, vol. 589(7841), pages 214-219, January.
    9. M. Lucamarini & Z. L. Yuan & J. F. Dynes & A. J. Shields, 2018. "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters," Nature, Nature, vol. 557(7705), pages 400-403, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai Zhou & Jinping Lin & Yumang Jing & Zhiliang Yuan, 2023. "Twin-field quantum key distribution without optical frequency dissemination," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Hanley, Brenda J. & Carstensen, Michelle & Walsh, Daniel P. & Christensen, Sonja A. & Storm, Daniel J. & Booth, James G. & Guinness, Joseph & Them, Cara E. & Ahmed, Md Sohel & Schuler, Krysten L., 2022. "Informing Surveillance through the Characterization of Outbreak Potential of Chronic Wasting Disease in White-Tailed Deer," Ecological Modelling, Elsevier, vol. 471(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai Zhou & Jinping Lin & Yumang Jing & Zhiliang Yuan, 2023. "Twin-field quantum key distribution without optical frequency dissemination," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Liu, Xiao-Peng & Kang, Jia-Le & Xie, Jia-Hui & Zhang, Ming-Hui, 2022. "Efficient twin-field quantum key distribution with heralded single-photon source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
    4. Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Valeria Vento & Santiago Tarrago Velez & Anna Pogrebna & Christophe Galland, 2023. "Measurement-induced collective vibrational quantum coherence under spontaneous Raman scattering in a liquid," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Mohd Hirzi Adnan & Zuriati Ahmad Zukarnain & Nur Ziadah Harun, 2022. "Quantum Key Distribution for 5G Networks: A Review, State of Art and Future Directions," Future Internet, MDPI, vol. 14(3), pages 1-28, February.
    9. Ming-Hao Jiang & Wenyi Xue & Qian He & Yu-Yang An & Xiaodong Zheng & Wen-Jie Xu & Yu-Bo Xie & Yanqing Lu & Shining Zhu & Xiao-Song Ma, 2023. "Quantum storage of entangled photons at telecom wavelengths in a crystal," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Yang, Ming & Cao, Zhuo-Liang, 2004. "Entanglement distillation for W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 141-148.
    11. Hugo Molinares & Bing He & Vitalie Eremeev, 2023. "Transfer of Quantum States and Stationary Quantum Correlations in a Hybrid Optomechanical Network," Mathematics, MDPI, vol. 11(13), pages 1-18, June.
    12. Tulio Brito Brasil & Valeriy Novikov & Hugo Kerdoncuff & Mikael Lassen & Eugene S. Polzik, 2022. "Two-colour high-purity Einstein-Podolsky-Rosen photonic state," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    13. Mujtaba Zahidy & Domenico Ribezzo & Claudia Lazzari & Ilaria Vagniluca & Nicola Biagi & Ronny Müller & Tommaso Occhipinti & Leif K. Oxenløwe & Michael Galili & Tetsuya Hayashi & Dajana Cassioli & Anto, 2024. "Practical high-dimensional quantum key distribution protocol over deployed multicore fiber," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    14. Ning-Ning Wang & Alejandro Pozas-Kerstjens & Chao Zhang & Bi-Heng Liu & Yun-Feng Huang & Chuan-Feng Li & Guang-Can Guo & Nicolas Gisin & Armin Tavakoli, 2023. "Certification of non-classicality in all links of a photonic star network without assuming quantum mechanics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Ignazio Pedone & Antonio Lioy, 2022. "Quantum Key Distribution in Kubernetes Clusters," Future Internet, MDPI, vol. 14(6), pages 1-19, May.
    16. Shuai Shi & Biao Xu & Kuan Zhang & Gen-Sheng Ye & De-Sheng Xiang & Yubao Liu & Jingzhi Wang & Daiqin Su & Lin Li, 2022. "High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Francesco Chiti & Romano Fantacci & Roberto Picchi & Laura Pierucci, 2021. "Towards the Quantum Internet: Satellite Control Plane Architectures and Protocol Design," Future Internet, MDPI, vol. 13(8), pages 1-13, July.
    18. P. Laccotripes & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2024. "Spin-photon entanglement with direct photon emission in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Cao, Zhuo-Liang & Yang, Ming, 2004. "Probabilistic teleportation of unknown atomic state using W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 132-140.
    20. Lai, Hong & Pieprzyk, Josef & Orgun, Mehmet A., 2020. "Novel quantum key distribution with shift operations based on Fibonacci and Lucas valued orbital angular momentum entangled states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31534-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.