IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i6p160-d823600.html
   My bibliography  Save this article

Quantum Key Distribution in Kubernetes Clusters

Author

Listed:
  • Ignazio Pedone

    (Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy)

  • Antonio Lioy

    (Department of Control and Computer Engineering, Politecnico di Torino, 10129 Torino, Italy)

Abstract

Quantum Key Distribution (QKD) represents a reasonable countermeasure to the advent of Quantum Computing and its impact on current public-key cryptography. So far, considerable efforts have been devoted to investigate possible application scenarios for QKD in several domains such as Cloud Computing and NFV. This paper extends a previous work whose main objective was to propose a new software stack, the Quantum Software Stack (QSS), to integrate QKD into software-defined infrastructures. The contribution of this paper is twofold: enhancing the previous work adding functionalities to the first version of the QSS, and presenting a practical integration of the QSS in Kubernetes, which is the de-facto standard for container orchestration.

Suggested Citation

  • Ignazio Pedone & Antonio Lioy, 2022. "Quantum Key Distribution in Kubernetes Clusters," Future Internet, MDPI, vol. 14(6), pages 1-19, May.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:160-:d:823600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/6/160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/6/160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Lucamarini & Z. L. Yuan & J. F. Dynes & A. J. Shields, 2018. "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters," Nature, Nature, vol. 557(7705), pages 400-403, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Hirzi Adnan & Zuriati Ahmad Zukarnain & Nur Ziadah Harun, 2022. "Quantum Key Distribution for 5G Networks: A Review, State of Art and Future Directions," Future Internet, MDPI, vol. 14(3), pages 1-28, February.
    2. Lai Zhou & Jinping Lin & Yumang Jing & Zhiliang Yuan, 2023. "Twin-field quantum key distribution without optical frequency dissemination," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Liu, Xiao-Peng & Kang, Jia-Le & Xie, Jia-Hui & Zhang, Ming-Hui, 2022. "Efficient twin-field quantum key distribution with heralded single-photon source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    5. Yi Luo & Xi Cheng & Hao-Kun Mao & Qiong Li, 2024. "An Overview of Postprocessing in Quantum Key Distribution," Mathematics, MDPI, vol. 12(14), pages 1-44, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:6:p:160-:d:823600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.