Simulating quantum key distribution in fiber-based quantum networks
Author
Abstract
Suggested Citation
DOI: 10.1177/15485129231154929
Download full text from publisher
References listed on IDEAS
- Stefano Pirandola & Riccardo Laurenza & Carlo Ottaviani & Leonardo Banchi, 2017. "Fundamental limits of repeaterless quantum communications," Nature Communications, Nature, vol. 8(1), pages 1-15, April.
- Masahiro Takeoka & Saikat Guha & Mark M. Wilde, 2014. "Fundamental rate-loss tradeoff for optical quantum key distribution," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
- H. J. Kimble, 2008. "The quantum internet," Nature, Nature, vol. 453(7198), pages 1023-1030, June.
- Koji Azuma & Akihiro Mizutani & Hoi-Kwong Lo, 2016. "Fundamental rate-loss trade-off for the quantum internet," Nature Communications, Nature, vol. 7(1), pages 1-8, December.
- Koji Azuma & Kiyoshi Tamaki & Hoi-Kwong Lo, 2015. "All-photonic quantum repeaters," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
- Douglas D Hodson & Michael R Grimaila & Logan O Mailloux & Colin V McLaughlin & Gerald Baumgartner, 2019. "Modeling quantum optics for quantum key distribution system simulation," The Journal of Defense Modeling and Simulation, , vol. 16(1), pages 15-26, January.
- Jonathan C Denton & Douglas D Hodson & Richard G Cobb & Logan O Mailloux & Michael R Grimaila & Gerald Baumgartner, 2019. "A model to estimate performance of space-based quantum communication protocols including quantum key distribution systems," The Journal of Defense Modeling and Simulation, , vol. 16(1), pages 5-13, January.
- Ryan D Engle & Logan O Mailloux & Michael R Grimaila & Douglas D Hodson & Colin V McLaughlin & Gerald Baumgartner, 2019. "Implementing the decoy state protocol in a practically oriented Quantum Key Distribution system-level model," The Journal of Defense Modeling and Simulation, , vol. 16(1), pages 27-44, January.
- M. Lucamarini & Z. L. Yuan & J. F. Dynes & A. J. Shields, 2018. "Overcoming the rate–distance limit of quantum key distribution without quantum repeaters," Nature, Nature, vol. 557(7705), pages 400-403, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Lai Zhou & Jinping Lin & Yumang Jing & Zhiliang Yuan, 2023. "Twin-field quantum key distribution without optical frequency dissemination," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Liu, Xiao-Peng & Kang, Jia-Le & Xie, Jia-Hui & Zhang, Ming-Hui, 2022. "Efficient twin-field quantum key distribution with heralded single-photon source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
- Gyongyosi, Laszlo & Imre, Sandor, 2018. "Multiple access multicarrier continuous-variable quantum key distribution," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 491-505.
- Shuai Shi & Biao Xu & Kuan Zhang & Gen-Sheng Ye & De-Sheng Xiang & Yubao Liu & Jingzhi Wang & Daiqin Su & Lin Li, 2022. "High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
- T. Thu Ha Do & Milad Nonahal & Chi Li & Vytautas Valuckas & Hark Hoe Tan & Arseniy I. Kuznetsov & Hai Son Nguyen & Igor Aharonovich & Son Tung Ha, 2024. "Room-temperature strong coupling in a single-photon emitter-metasurface system," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Penglong Ren & Shangming Wei & Weixi Liu & Shupei Lin & Zhaohua Tian & Tailin Huang & Jianwei Tang & Yaocheng Shi & Xue-Wen Chen, 2022. "Photonic-circuited resonance fluorescence of single molecules with an ultrastable lifetime-limited transition," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Jake Rochman & Tian Xie & John G. Bartholomew & K. C. Schwab & Andrei Faraon, 2023. "Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Simon Hönl & Youri Popoff & Daniele Caimi & Alberto Beccari & Tobias J. Kippenberg & Paul Seidler, 2022. "Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Antonio A Lagana & Max A Lohe & Lorenz von Smekal, 2011. "Interfacing External Quantum Devices to a Universal Quantum Computer," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-5, December.
- Chenjia Mi & Gavin C. Gee & Chance W. Lander & Donghoon Shin & Matthew L. Atteberry & Novruz G. Akhmedov & Lamia Hidayatova & Jesse D. DiCenso & Wai Tak Yip & Bin Chen & Yihan Shao & Yitong Dong, 2025. "Towards non-blinking and photostable perovskite quantum dots," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
- Artur Czerwinski, 2022. "Quantum Communication with Polarization-Encoded Qubits under Majorization Monotone Dynamics," Mathematics, MDPI, vol. 10(21), pages 1-17, October.
- M. Businger & L. Nicolas & T. Sanchez Mejia & A. Ferrier & P. Goldner & Mikael Afzelius, 2022. "Non-classical correlations over 1250 modes between telecom photons and 979-nm photons stored in 171Yb3+:Y2SiO5," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Steve J. Bickley & Ho Fai Chan & Sascha L. Schmidt & Benno Torgler, 2020. "Quantum-Sapiens: The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving," CREMA Working Paper Series 2020-18, Center for Research in Economics, Management and the Arts (CREMA).
- Shankar G. Menon & Noah Glachman & Matteo Pompili & Alan Dibos & Hannes Bernien, 2024. "An integrated atom array-nanophotonic chip platform with background-free imaging," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Yeonghun Lee & Yaoqiao Hu & Xiuyao Lang & Dongwook Kim & Kejun Li & Yuan Ping & Kai-Mei C. Fu & Kyeongjae Cho, 2022. "Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
- Steve J. Bickley & Alison Macintyre & Benno Torgler, 2021. "Artificial Intelligence and Big Data in Sustainable Entrepreneurship," CREMA Working Paper Series 2021-11, Center for Research in Economics, Management and the Arts (CREMA).
- Mohd Hirzi Adnan & Zuriati Ahmad Zukarnain & Nur Ziadah Harun, 2022. "Quantum Key Distribution for 5G Networks: A Review, State of Art and Future Directions," Future Internet, MDPI, vol. 14(3), pages 1-28, February.
More about this item
Keywords
Quantum network simulation; quantum key distribution;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:joudef:v:21:y:2024:i:4:p:463-486. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.