IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms10171.html
   My bibliography  Save this article

All-photonic intercity quantum key distribution

Author

Listed:
  • Koji Azuma

    (NTT Basic Research Laboratories, NTT Corporation)

  • Kiyoshi Tamaki

    (NTT Basic Research Laboratories, NTT Corporation)

  • William J. Munro

    (NTT Basic Research Laboratories, NTT Corporation)

Abstract

Recent field demonstrations of quantum key distribution (QKD) networks hold promise for unconditionally secure communication. However, owing to loss in optical fibres, the length of point-to-point links is limited to a hundred kilometers, restricting the QKD networks to intracity. A natural way to expand the QKD network in a secure manner is to connect it to another one in a different city with quantum repeaters. But, this solution is overengineered unless such a backbone connection is intercontinental. Here we present a QKD protocol that could supersede even quantum repeaters for connecting QKD networks in different cities below 800 km distant. Nonetheless, in contrast to quantum repeaters, this protocol uses only a single intermediate node with optical devices, requiring neither quantum memories nor quantum error correction. Our all-photonic ‘intercity’ QKD protocol bridges large gaps between the conventional intracity QKD networks and the future intercontinental quantum repeaters, conceptually and technologically.

Suggested Citation

  • Koji Azuma & Kiyoshi Tamaki & William J. Munro, 2015. "All-photonic intercity quantum key distribution," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10171
    DOI: 10.1038/ncomms10171
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10171
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms10171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.