IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms4732.html
   My bibliography  Save this article

Finite-key analysis for measurement-device-independent quantum key distribution

Author

Listed:
  • Marcos Curty

    (EI Telecomunicación, University of Vigo)

  • Feihu Xu

    (Center for Quantum Information and Quantum Control, University of Toronto)

  • Wei Cui

    (Center for Quantum Information and Quantum Control, University of Toronto)

  • Charles Ci Wen Lim

    (Group of Applied Physics, University of Geneva)

  • Kiyoshi Tamaki

    (NTT Basic Research Laboratories, NTT Corporation)

  • Hoi-Kwong Lo

    (Center for Quantum Information and Quantum Control, University of Toronto)

Abstract

Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach—measurement-device-independent quantum key distribution—has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

Suggested Citation

  • Marcos Curty & Feihu Xu & Wei Cui & Charles Ci Wen Lim & Kiyoshi Tamaki & Hoi-Kwong Lo, 2014. "Finite-key analysis for measurement-device-independent quantum key distribution," Nature Communications, Nature, vol. 5(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4732
    DOI: 10.1038/ncomms4732
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms4732
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms4732?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei Zeng & Hongyi Zhou & Weijie Wu & Xiongfeng Ma, 2022. "Mode-pairing quantum key distribution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Liu, Xiao-Peng & Kang, Jia-Le & Xie, Jia-Hui & Zhang, Ming-Hui, 2022. "Efficient twin-field quantum key distribution with heralded single-photon source," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms4732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.