IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31432-y.html
   My bibliography  Save this article

Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia

Author

Listed:
  • Efi Rousi

    (Member of the Leibniz Association)

  • Kai Kornhuber

    (Member of the Leibniz Association
    Columbia University
    Columbia University)

  • Goratz Beobide-Arsuaga

    (International Max Planck Research School on Earth System Modelling
    Universität Hamburg)

  • Fei Luo

    (Vrije Universiteit Amsterdam
    Royal Netherlands Meteorological Institute (KNMI))

  • Dim Coumou

    (Member of the Leibniz Association
    Vrije Universiteit Amsterdam
    Royal Netherlands Meteorological Institute (KNMI))

Abstract

Persistent heat extremes can have severe impacts on ecosystems and societies, including excess mortality, wildfires, and harvest failures. Here we identify Europe as a heatwave hotspot, exhibiting upward trends that are three-to-four times faster compared to the rest of the northern midlatitudes over the past 42 years. This accelerated trend is linked to atmospheric dynamical changes via an increase in the frequency and persistence of double jet stream states over Eurasia. We find that double jet occurrences are particularly important for western European heatwaves, explaining up to 35% of temperature variability. The upward trend in the persistence of double jet events explains almost all of the accelerated heatwave trend in western Europe, and about 30% of it over the extended European region. Those findings provide evidence that in addition to thermodynamical drivers, atmospheric dynamical changes have contributed to the increased rate of European heatwaves, with implications for risk management and potential adaptation strategies.

Suggested Citation

  • Efi Rousi & Kai Kornhuber & Goratz Beobide-Arsuaga & Fei Luo & Dim Coumou, 2022. "Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31432-y
    DOI: 10.1038/s41467-022-31432-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31432-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31432-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel E. Horton & Nathaniel C. Johnson & Deepti Singh & Daniel L. Swain & Bala Rajaratnam & Noah S. Diffenbaugh, 2015. "Contribution of changes in atmospheric circulation patterns to extreme temperature trends," Nature, Nature, vol. 522(7557), pages 465-469, June.
    2. Buwen Dong & Rowan T. Sutton & Len Shaffrey & Ben Harvey, 2022. "Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Nikolaos Christidis & Gareth S. Jones & Peter A. Stott, 2015. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave," Nature Climate Change, Nature, vol. 5(1), pages 46-50, January.
    4. Kai Kornhuber & Dim Coumou & Elisabeth Vogel & Corey Lesk & Jonathan F. Donges & Jascha Lehmann & Radley M. Horton, 2020. "Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions," Nature Climate Change, Nature, vol. 10(1), pages 48-53, January.
    5. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    6. S. E. Perkins-Kirkpatrick & S. C. Lewis, 2020. "Increasing trends in regional heatwaves," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    7. M. Carmen Alvarez-Castro & Davide Faranda & Pascal Yiou, 2018. "Atmospheric Dynamics Leading to West European Summer Hot Temperatures Since 1851," Complexity, Hindawi, vol. 2018, pages 1-10, January.
    8. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Wang & Meng Gao & Cheng Liu & Ran Zhao & Michael B. McElroy, 2024. "Uniformly elevated future heat stress in China driven by spatially heterogeneous water vapor changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Khosravi, Fatemeh & Lowes, Richard & Ugalde-Loo, Carlos E., 2023. "Cooling is hotting up in the UK," Energy Policy, Elsevier, vol. 174(C).
    3. Paloma Yáñez Serrano & Zofia Bieńkowska & Zofia Boni & Franciszek Chwałczyk & Amirhossein Hassani, 2024. "Understanding individual heat exposure through interdisciplinary research on thermoception," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    4. Robert Vautard & Julien Cattiaux & Tamara Happé & Jitendra Singh & Rémy Bonnet & Christophe Cassou & Dim Coumou & Fabio D’Andrea & Davide Faranda & Erich Fischer & Aurélien Ribes & Sebastian Sippel & , 2023. "Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Mi-Kyung Sung & Soon-Il An & Jongsoo Shin & Jae-Heung Park & Young-Min Yang & Hyo-Jeong Kim & Minhee Chang, 2023. "Ocean fronts as decadal thermostats modulating continental warming hiatus," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Lifei Lin & Chundi Hu & Bin Wang & Renguang Wu & Zeming Wu & Song Yang & Wenju Cai & Peiliang Li & Xuejun Xiong & Dake Chen, 2024. "Atlantic origin of the increasing Asian westerly jet interannual variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Katharina Drescher & Benedikt Janzen, 2023. "When Weather Wounds Workers: The Impact of Temperature on Workplace Accidents," Working Papers 226, Bavarian Graduate Program in Economics (BGPE).
    9. E. M. Fischer & U. Beyerle & L. Bloin-Wibe & C. Gessner & V. Humphrey & F. Lehner & A. G. Pendergrass & S. Sippel & J. Zeder & R. Knutti, 2023. "Storylines for unprecedented heatwaves based on ensemble boosting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifei Lin & Chundi Hu & Bin Wang & Renguang Wu & Zeming Wu & Song Yang & Wenju Cai & Peiliang Li & Xuejun Xiong & Dake Chen, 2024. "Atlantic origin of the increasing Asian westerly jet interannual variability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Xin-Feng Wei & Wei Yang & Mikael S. Hedenqvist, 2024. "Plastic pollution amplified by a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    3. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Vittal Hari & Subimal Ghosh & Wei Zhang & Rohini Kumar, 2022. "Strong influence of north Pacific Ocean variability on Indian summer heatwaves," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Serge Savary & Sonia Akter & Conny Almekinders & Jody Harris & Lise Korsten & Reimund Rötter & Stephen Waddington & Derrill Watson, 2020. "Mapping disruption and resilience mechanisms in food systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 695-717, August.
    9. Na Zhao & Mingxing Chen, 2021. "A Comprehensive Study of Spatiotemporal Variations in Temperature Extremes across China during 1960–2018," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    10. Yulong Yao & Wei Zhang & Ben Kirtman, 2023. "Increasing impacts of summer extreme precipitation and heatwaves in eastern China," Climatic Change, Springer, vol. 176(10), pages 1-20, October.
    11. Soledad Collazo & Mariana Barrucand & Matilde Rusticucci, 2023. "Hot and dry compound events in South America: present climate and future projections, and their association with the Pacific Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 299-323, October.
    12. repec:hal:journl:hal-04670841 is not listed on IDEAS
    13. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    14. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    15. Srihari Sundar & Michael T. Craig & Ashley E. Payne & David J. Brayshaw & Flavio Lehner, 2023. "Meteorological drivers of resource adequacy failures in current and high renewable Western U.S. power systems," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    17. Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
    18. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    19. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    20. Arellano-Gonzalez, Jesus & Juarez-Torres, Miriam & Zazueta-Borboa, Francisco, 2021. "Temperature shocks and local price changes of agricultural products: panel data evidence from Mexico," 2021 Annual Meeting, August 1-3, Austin, Texas 314060, Agricultural and Applied Economics Association.
    21. Cotto, Olivier & Chevin, Luis-Miguel, 2020. "Fluctuations in lifetime selection in an autocorrelated environment," Theoretical Population Biology, Elsevier, vol. 134(C), pages 119-128.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31432-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.