IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i10d10.1007_s10584-023-03610-4.html
   My bibliography  Save this article

Increasing impacts of summer extreme precipitation and heatwaves in eastern China

Author

Listed:
  • Yulong Yao

    (South China Sea Institute of Oceanology, Chinese Academy of Sciences
    South China Sea Institute of Oceanology, Chinese Academy of Sciences)

  • Wei Zhang

    (Princeton University
    National Oceanic and Atmospheric Administration/Global Systems Laboratory)

  • Ben Kirtman

    (University of Miami)

Abstract

Extreme precipitation events (EPEs) and heatwaves (HWs) can trigger floods, droughts, and other natural disasters, resulting in severe socioeconomic losses in eastern China. However, the accurate links between EPEs and HWs and future changes in these extremes are not fully resolved, which potentially impedes disaster warning and preparedness efforts. This study examines historical and future changes in summer EPEs and HWs in eastern China based on observations and model outputs from the Coupled Model Intercomparison Project Phase 6. The results show that EPEs and HWs in eastern China have increased in the past four decades and are projected to rise in the future. According to multi-model projections, the Yangtze River Basin, along with areas to its south, are expected to experience an increase in compound disasters due to HWs and EPEs. High values of the multi-year mean total population exposure to EPEs and HWs are observed in the North China Plain, Yangtze River Delta, Sichuan Basin, and southeast coast. The total population exposure to EPEs shows a decreasing trend under Shared Socioeconomic Pathway (SSP) 245 and SSP585 scenarios during 2021–2100, consistent with future population decline. However, the annual total population exposure to HWs will increase, reaching nearly 3.0 billion and 5.0 billion by the end of the century under the SSP245 and SSP585 scenarios, respectively. Within the context of global warming, the relationship between the mean-state of precipitation and maximum temperature as well as the relationship between extreme precipitation and heatwaves shift from negative correlation in the historical period to positive correlation in future projections for eastern China.

Suggested Citation

  • Yulong Yao & Wei Zhang & Ben Kirtman, 2023. "Increasing impacts of summer extreme precipitation and heatwaves in eastern China," Climatic Change, Springer, vol. 176(10), pages 1-20, October.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:10:d:10.1007_s10584-023-03610-4
    DOI: 10.1007/s10584-023-03610-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03610-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03610-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gavin D. Madakumbura & Chad W. Thackeray & Jesse Norris & Naomi Goldenson & Alex Hall, 2021. "Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. E. M. Fischer & R. Knutti, 2015. "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes," Nature Climate Change, Nature, vol. 5(6), pages 560-564, June.
    3. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    4. S. E. Perkins-Kirkpatrick & S. C. Lewis, 2020. "Increasing trends in regional heatwaves," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Peter A. Stott & D. A. Stone & M. R. Allen, 2004. "Human contribution to the European heatwave of 2003," Nature, Nature, vol. 432(7017), pages 610-614, December.
    6. Graham Simpkins, 2017. "Progress in climate modelling," Nature Climate Change, Nature, vol. 7(10), pages 684-685, October.
    7. Kaiwen Li & Ming Wang & Kai Liu, 2021. "The Study on Compound Drought and Heatwave Events in China Using Complex Networks," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    8. E. M. Fischer & U. Beyerle & R. Knutti, 2013. "Robust spatially aggregated projections of climate extremes," Nature Climate Change, Nature, vol. 3(12), pages 1033-1038, December.
    9. Bin Tang & Wenting Hu, 2022. "Significant Increase in Population Exposure to Extreme Precipitation in South China and Indochina in the Future," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    10. Leibin Wang & Robert V. Rohli & Qigen Lin & Shaofei Jin & Xiaodong Yan, 2022. "Impact of Extreme Heatwaves on Population Exposure in China Due to Additional Warming," Sustainability, MDPI, vol. 14(18), pages 1-13, September.
    11. Chad W. Thackeray & Alex Hall & Jesse Norris & Di Chen, 2022. "Constraining the increased frequency of global precipitation extremes under warming," Nature Climate Change, Nature, vol. 12(5), pages 441-448, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franzke, Christian L.E., 2021. "Towards the development of economic damage functions for weather and climate extremes," Ecological Economics, Elsevier, vol. 189(C).
    2. Neethu C & K V Ramesh, 2023. "Projected changes in heat wave characteristics over India," Climatic Change, Springer, vol. 176(10), pages 1-26, October.
    3. Xin-Feng Wei & Wei Yang & Mikael S. Hedenqvist, 2024. "Plastic pollution amplified by a warming climate," Nature Communications, Nature, vol. 15(1), pages 1-3, December.
    4. Xiaoting Sun & Qinghua Ding & Shih-Yu Simon Wang & Dániel Topál & Qingquan Li & Christopher Castro & Haiyan Teng & Rui Luo & Yihui Ding, 2022. "Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    6. S. E. Perkins-Kirkpatrick & C. J. White & L. V. Alexander & D. Argüeso & G. Boschat & T. Cowan & J. P. Evans & M. Ekström & E. C. J. Oliver & A. Phatak & A. Purich, 2016. "Natural hazards in Australia: heatwaves," Climatic Change, Springer, vol. 139(1), pages 101-114, November.
    7. Anna Gloria Billé & Marco Rogna, 2022. "The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 3-36, January.
    8. Ben Clarke & Friederike Otto & Richard Jones, 2023. "When don’t we need a new extreme event attribution study?," Climatic Change, Springer, vol. 176(5), pages 1-19, May.
    9. Zhiqi Yang & Gabriele Villarini, 2020. "On the role of increased CO2 concentrations in enhancing the temporal clustering of heavy precipitation events across Europe," Climatic Change, Springer, vol. 162(3), pages 1455-1472, October.
    10. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    11. Sebastian Sippel & F Otto, 2014. "Beyond climatological extremes - assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate," Climatic Change, Springer, vol. 125(3), pages 381-398, August.
    12. Meng Zhang & Haipeng Yu & Andrew D. King & Yun Wei & Jianping Huang & Yu Ren, 2020. "Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia," Climatic Change, Springer, vol. 162(2), pages 603-619, September.
    13. Fenying Cai & Caihong Liu & Dieter Gerten & Song Yang & Tuantuan Zhang & Kaiwen Li & Jürgen Kurths, 2024. "Sketching the spatial disparities in heatwave trends by changing atmospheric teleconnections in the Northern Hemisphere," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Thomas R. Knutson & Jeffrey J. Ploshay, 2016. "Detection of anthropogenic influence on a summertime heat stress index," Climatic Change, Springer, vol. 138(1), pages 25-39, September.
    15. Bruce Barrett & Maggie Grabow & Cathy Middlecamp & Margaret Mooney & Mary M. Checovich & Alexander K. Converse & Bob Gillespie & Julia Yates, 2016. "Mindful Climate Action: Health and Environmental Co-Benefits from Mindfulness-Based Behavioral Training," Sustainability, MDPI, vol. 8(10), pages 1-20, October.
    16. Greg Lusk, 2017. "The social utility of event attribution: liability, adaptation, and justice-based loss and damage," Climatic Change, Springer, vol. 143(1), pages 201-212, July.
    17. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    18. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Ralph Trancoso & Jozef Syktus & Richard P. Allan & Jacky Croke & Ove Hoegh-Guldberg & Robin Chadwick, 2024. "Significantly wetter or drier future conditions for one to two thirds of the world’s population," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Zheng, Zhonghua & Zhao, Lei & Oleson, Keith W., 2020. "Large model parameter and structural uncertainties in global projections of urban heat waves," Earth Arxiv f5pwa, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:10:d:10.1007_s10584-023-03610-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.