IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31410-4.html
   My bibliography  Save this article

A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system

Author

Listed:
  • Jongmin Lee

    (Sandia National Laboratories)

  • Roger Ding

    (Sandia National Laboratories)

  • Justin Christensen

    (Sandia National Laboratories)

  • Randy R. Rosenthal

    (Sandia National Laboratories)

  • Aaron Ison

    (Sandia National Laboratories)

  • Daniel P. Gillund

    (Sandia National Laboratories)

  • David Bossert

    (Sandia National Laboratories)

  • Kyle H. Fuerschbach

    (Sandia National Laboratories)

  • William Kindel

    (Sandia National Laboratories)

  • Patrick S. Finnegan

    (Sandia National Laboratories)

  • Joel R. Wendt

    (Sandia National Laboratories)

  • Michael Gehl

    (Sandia National Laboratories)

  • Ashok Kodigala

    (Sandia National Laboratories)

  • Hayden McGuinness

    (Sandia National Laboratories)

  • Charles A. Walker

    (Sandia National Laboratories)

  • Shanalyn A. Kemme

    (Sandia National Laboratories)

  • Anthony Lentine

    (Sandia National Laboratories)

  • Grant Biedermann

    (University of Oklahoma)

  • Peter D. D. Schwindt

    (Sandia National Laboratories)

Abstract

The extreme miniaturization of a cold-atom interferometer accelerometer requires the development of novel technologies and architectures for the interferometer subsystems. Here, we describe several component technologies and a laser system architecture to enable a path to such miniaturization. We developed a custom, compact titanium vacuum package containing a microfabricated grating chip for a tetrahedral grating magneto-optical trap (GMOT) using a single cooling beam. In addition, we designed a multi-channel photonic-integrated-circuit-compatible laser system implemented with a single seed laser and single sideband modulators in a time-multiplexed manner, reducing the number of optical channels connected to the sensor head. In a compact sensor head containing the vacuum package, sub-Doppler cooling in the GMOT produces 15 μK temperatures, and the GMOT can operate at a 20 Hz data rate. We validated the atomic coherence with Ramsey interferometry using microwave spectroscopy, then demonstrated a light-pulse atom interferometer in a gravimeter configuration for a 10 Hz measurement data rate and T = 0–4.5 ms interrogation time, resulting in Δg/g = 2.0 × 10−6. This work represents a significant step towards deployable cold-atom inertial sensors under large amplitude motional dynamics.

Suggested Citation

  • Jongmin Lee & Roger Ding & Justin Christensen & Randy R. Rosenthal & Aaron Ison & Daniel P. Gillund & David Bossert & Kyle H. Fuerschbach & William Kindel & Patrick S. Finnegan & Joel R. Wendt & Micha, 2022. "A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31410-4
    DOI: 10.1038/s41467-022-31410-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31410-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31410-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Achim Peters & Keng Yeow Chung & Steven Chu, 1999. "Measurement of gravitational acceleration by dropping atoms," Nature, Nature, vol. 400(6747), pages 849-852, August.
    2. David C. Aveline & Jason R. Williams & Ethan R. Elliott & Chelsea Dutenhoffer & James R. Kellogg & James M. Kohel & Norman E. Lay & Kamal Oudrhiri & Robert F. Shotwell & Nan Yu & Robert J. Thompson, 2020. "Observation of Bose–Einstein condensates in an Earth-orbiting research lab," Nature, Nature, vol. 582(7811), pages 193-197, June.
    3. G. Rosi & F. Sorrentino & L. Cacciapuoti & M. Prevedelli & G. M. Tino, 2014. "Precision measurement of the Newtonian gravitational constant using cold atoms," Nature, Nature, vol. 510(7506), pages 518-521, June.
    4. Ben Stray & Andrew Lamb & Aisha Kaushik & Jamie Vovrosh & Anthony Rodgers & Jonathan Winch & Farzad Hayati & Daniel Boddice & Artur Stabrawa & Alexander Niggebaum & Mehdi Langlois & Yu-Hung Lien & Sam, 2022. "Quantum sensing for gravity cartography," Nature, Nature, vol. 602(7898), pages 590-594, February.
    5. J. R. Maze & P. L. Stanwix & J. S. Hodges & S. Hong & J. M. Taylor & P. Cappellaro & L. Jiang & M. V. Gurudev Dutt & E. Togan & A. S. Zibrov & A. Yacoby & R. L. Walsworth & M. D. Lukin, 2008. "Nanoscale magnetic sensing with an individual electronic spin in diamond," Nature, Nature, vol. 455(7213), pages 644-647, October.
    6. Gopalakrishnan Balasubramanian & I. Y. Chan & Roman Kolesov & Mohannad Al-Hmoud & Julia Tisler & Chang Shin & Changdong Kim & Aleksander Wojcik & Philip R. Hemmer & Anke Krueger & Tobias Hanke & Alfre, 2008. "Nanoscale imaging magnetometry with diamond spins under ambient conditions," Nature, Nature, vol. 455(7213), pages 648-651, October.
    7. R. Geiger & V. Ménoret & G. Stern & N. Zahzam & P. Cheinet & B. Battelier & A. Villing & F. Moron & M. Lours & Y. Bidel & A. Bresson & A. Landragin & P. Bouyer, 2011. "Detecting inertial effects with airborne matter-wave interferometry," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    8. Dennis Becker & Maike D. Lachmann & Stephan T. Seidel & Holger Ahlers & Aline N. Dinkelaker & Jens Grosse & Ortwin Hellmig & Hauke Müntinga & Vladimir Schkolnik & Thijs Wendrich & André Wenzlawski & B, 2018. "Space-borne Bose–Einstein condensation for precision interferometry," Nature, Nature, vol. 562(7727), pages 391-395, October.
    9. T.L. Nicholson & S.L. Campbell & R.B. Hutson & G.E. Marti & B.J. Bloom & R.L. McNally & W. Zhang & M.D. Barrett & M.S. Safronova & G.F. Strouse & W.L. Tew & J. Ye, 2015. "Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    10. T. Kovachy & P. Asenbaum & C. Overstreet & C. A. Donnelly & S. M. Dickerson & A. Sugarbaker & J. M. Hogan & M. A. Kasevich, 2015. "Quantum superposition at the half-metre scale," Nature, Nature, vol. 528(7583), pages 530-533, December.
    11. Y. Bidel & N. Zahzam & C. Blanchard & A. Bonnin & M. Cadoret & A. Bresson & D. Rouxel & M. F. Lequentrec-Lalancette, 2018. "Absolute marine gravimetry with matter-wave interferometry," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    12. Brynle Barrett & Laura Antoni-Micollier & Laure Chichet & Baptiste Battelier & Thomas Lévèque & Arnaud Landragin & Philippe Bouyer, 2016. "Dual matter-wave inertial sensors in weightlessness," Nature Communications, Nature, vol. 7(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jack C. Saywell & Max S. Carey & Philip S. Light & Stuart S. Szigeti & Alistair R. Milne & Karandeep S. Gill & Matthew L. Goh & Viktor S. Perunicic & Nathanial M. Wilson & Calum D. Macrae & Alexander , 2023. "Enhancing the sensitivity of atom-interferometric inertial sensors using robust control," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Gabriela D. Martinez & Chao Li & Alexander Staron & John Kitching & Chandra Raman & William R. McGehee, 2023. "A chip-scale atomic beam clock," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jack C. Saywell & Max S. Carey & Philip S. Light & Stuart S. Szigeti & Alistair R. Milne & Karandeep S. Gill & Matthew L. Goh & Viktor S. Perunicic & Nathanial M. Wilson & Calum D. Macrae & Alexander , 2023. "Enhancing the sensitivity of atom-interferometric inertial sensors using robust control," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Rugang Geng & Adrian Mena & William J. Pappas & Dane R. McCamey, 2023. "Sub-micron spin-based magnetic field imaging with an organic light emitting diode," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Naceur Gaaloul & Matthias Meister & Robin Corgier & Annie Pichery & Patrick Boegel & Waldemar Herr & Holger Ahlers & Eric Charron & Jason R. Williams & Robert J. Thompson & Wolfgang P. Schleich & Erns, 2022. "A space-based quantum gas laboratory at picokelvin energy scales," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Mariam Algarni & Kamal Berrada & Sayed Abdel-Khalek & Hichem Eleuch, 2022. "Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties," Mathematics, MDPI, vol. 10(17), pages 1-12, August.
    6. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    7. Xin Zheng & Jonathan Dolde & Matthew C. Cambria & Hong Ming Lim & Shimon Kolkowitz, 2023. "A lab-based test of the gravitational redshift with a miniature clock network," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Zhishan Luo & Qiang Wan & Zhiyang Yu & Sen Lin & Zailai Xie & Xinchen Wang, 2021. "Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    9. Ozgur Sahin & Erica Leon Sanchez & Sophie Conti & Amala Akkiraju & Paul Reshetikhin & Emanuel Druga & Aakriti Aggarwal & Benjamin Gilbert & Sunil Bhave & Ashok Ajoy, 2022. "High field magnetometry with hyperpolarized nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31410-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.