IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v562y2018i7727d10.1038_s41586-018-0605-1.html
   My bibliography  Save this article

Space-borne Bose–Einstein condensation for precision interferometry

Author

Listed:
  • Dennis Becker

    (Leibniz University Hannover)

  • Maike D. Lachmann

    (Leibniz University Hannover)

  • Stephan T. Seidel

    (Leibniz University Hannover
    OHB System AG)

  • Holger Ahlers

    (Leibniz University Hannover)

  • Aline N. Dinkelaker

    (Humboldt-Universität zu Berlin)

  • Jens Grosse

    (University of Bremen
    German Aerospace Center (DLR))

  • Ortwin Hellmig

    (University Hamburg)

  • Hauke Müntinga

    (University of Bremen)

  • Vladimir Schkolnik

    (Humboldt-Universität zu Berlin)

  • Thijs Wendrich

    (Leibniz University Hannover)

  • André Wenzlawski

    (Johannes Gutenberg University Mainz (JGU))

  • Benjamin Weps

    (German Aerospace Center (DLR))

  • Robin Corgier

    (Leibniz University Hannover
    CNRS, Université Paris-Sud, Université Paris-Saclay)

  • Tobias Franz

    (German Aerospace Center (DLR))

  • Naceur Gaaloul

    (Leibniz University Hannover)

  • Waldemar Herr

    (Leibniz University Hannover)

  • Daniel Lüdtke

    (German Aerospace Center (DLR))

  • Manuel Popp

    (Leibniz University Hannover)

  • Sirine Amri

    (CNRS, Université Paris-Sud, Université Paris-Saclay)

  • Hannes Duncker

    (University Hamburg)

  • Maik Erbe

    (Leibniz-Institut für Höchstfrequenztechnik)

  • Anja Kohfeldt

    (Leibniz-Institut für Höchstfrequenztechnik)

  • André Kubelka-Lange

    (University of Bremen)

  • Claus Braxmaier

    (University of Bremen
    German Aerospace Center (DLR))

  • Eric Charron

    (CNRS, Université Paris-Sud, Université Paris-Saclay)

  • Wolfgang Ertmer

    (Leibniz University Hannover)

  • Markus Krutzik

    (Humboldt-Universität zu Berlin)

  • Claus Lämmerzahl

    (University of Bremen)

  • Achim Peters

    (Humboldt-Universität zu Berlin)

  • Wolfgang P. Schleich

    (Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST)
    Texas A&M University
    Texas A&M University
    Texas A&M University)

  • Klaus Sengstock

    (University Hamburg)

  • Reinhold Walser

    (Technische Universität Darmstadt)

  • Andreas Wicht

    (Leibniz-Institut für Höchstfrequenztechnik)

  • Patrick Windpassinger

    (Johannes Gutenberg University Mainz (JGU))

  • Ernst M. Rasel

    (Leibniz University Hannover)

Abstract

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose–Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose–Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose–Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose–Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose–Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions1,2.

Suggested Citation

  • Dennis Becker & Maike D. Lachmann & Stephan T. Seidel & Holger Ahlers & Aline N. Dinkelaker & Jens Grosse & Ortwin Hellmig & Hauke Müntinga & Vladimir Schkolnik & Thijs Wendrich & André Wenzlawski & B, 2018. "Space-borne Bose–Einstein condensation for precision interferometry," Nature, Nature, vol. 562(7727), pages 391-395, October.
  • Handle: RePEc:nat:nature:v:562:y:2018:i:7727:d:10.1038_s41586-018-0605-1
    DOI: 10.1038/s41586-018-0605-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0605-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0605-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jason R. Williams & Charles A. Sackett & Holger Ahlers & David C. Aveline & Patrick Boegel & Sofia Botsi & Eric Charron & Ethan R. Elliott & Naceur Gaaloul & Enno Giese & Waldemar Herr & James R. Kell, 2024. "Pathfinder experiments with atom interferometry in the Cold Atom Lab onboard the International Space Station," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Jongmin Lee & Roger Ding & Justin Christensen & Randy R. Rosenthal & Aaron Ison & Daniel P. Gillund & David Bossert & Kyle H. Fuerschbach & William Kindel & Patrick S. Finnegan & Joel R. Wendt & Micha, 2022. "A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Naceur Gaaloul & Matthias Meister & Robin Corgier & Annie Pichery & Patrick Boegel & Waldemar Herr & Holger Ahlers & Eric Charron & Jason R. Williams & Robert J. Thompson & Wolfgang P. Schleich & Erns, 2022. "A space-based quantum gas laboratory at picokelvin energy scales," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:562:y:2018:i:7727:d:10.1038_s41586-018-0605-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.