IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v400y1999i6747d10.1038_23655.html
   My bibliography  Save this article

Measurement of gravitational acceleration by dropping atoms

Author

Listed:
  • Achim Peters

    (Stanford University)

  • Keng Yeow Chung

    (Stanford University)

  • Steven Chu

    (Stanford University)

Abstract

Laser-cooling of atoms and atom-trapping are finding increasing application in many areas of science1. One important use of laser-cooled atoms is in atom interferometers2. In these devices, an atom is placed into a superposition of two or more spatially separated atomic states; these states are each described by a quantum-mechanical phase term, which will interfere with one another if they are brought back together at a later time. Atom interferometers have been shown to be very precise inertial sensors for acceleration3,4, rotation5 and for the measurement of the fine structure constant6. Here we use an atom interferometer based on a fountain of laser-cooled atoms to measure g, the acceleration of gravity. Through detailed investigation and elimination of systematic effects that may affect the accuracy ofthe measurement, we achieve an absolute uncertainty of Δg/g ≈ 3 × 10−9, representing a million-fold increase in absoluteaccuracy compared with previous atom-interferometer experiments7. We also compare our measurement with the value of g obtained at the same laboratory site using a Michelson interferometer gravimeter (a modern equivalent of Galileo's ‘leaning tower’ experiment in Pisa). We show that the macroscopic glass object used in this instrument falls with the same acceleration, to within 7 parts in 109, as a quantum-mechanical caesium atom.

Suggested Citation

  • Achim Peters & Keng Yeow Chung & Steven Chu, 1999. "Measurement of gravitational acceleration by dropping atoms," Nature, Nature, vol. 400(6747), pages 849-852, August.
  • Handle: RePEc:nat:nature:v:400:y:1999:i:6747:d:10.1038_23655
    DOI: 10.1038/23655
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/23655
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/23655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongmin Lee & Roger Ding & Justin Christensen & Randy R. Rosenthal & Aaron Ison & Daniel P. Gillund & David Bossert & Kyle H. Fuerschbach & William Kindel & Patrick S. Finnegan & Joel R. Wendt & Micha, 2022. "A compact cold-atom interferometer with a high data-rate grating magneto-optical trap and a photonic-integrated-circuit-compatible laser system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Mariam Algarni & Kamal Berrada & Sayed Abdel-Khalek & Hichem Eleuch, 2022. "Parity Deformed Tavis-Cummings Model: Entanglement, Parameter Estimation and Statistical Properties," Mathematics, MDPI, vol. 10(17), pages 1-12, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:400:y:1999:i:6747:d:10.1038_23655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.