IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29734-2.html
   My bibliography  Save this article

Intestinal fibroblastic reticular cell niches control innate lymphoid cell homeostasis and function

Author

Listed:
  • Hung-Wei Cheng

    (Kantonsspital St. Gallen)

  • Urs Mörbe

    (Kantonsspital St. Gallen)

  • Mechthild Lütge

    (Kantonsspital St. Gallen)

  • Céline Engetschwiler

    (Kantonsspital St. Gallen)

  • Lucas Onder

    (Kantonsspital St. Gallen)

  • Mario Novkovic

    (Kantonsspital St. Gallen)

  • Cristina Gil-Cruz

    (Kantonsspital St. Gallen)

  • Christian Perez-Shibayama

    (Kantonsspital St. Gallen)

  • Thomas Hehlgans

    (University of Regensburg)

  • Elke Scandella

    (Kantonsspital St. Gallen)

  • Burkhard Ludewig

    (Kantonsspital St. Gallen)

Abstract

Innate lymphoid cells (ILCs) govern immune cell homeostasis in the intestine and protect the host against microbial pathogens. Various cell-intrinsic pathways have been identified that determine ILC development and differentiation. However, the cellular components that regulate ILC sustenance and function in the intestinal lamina propria are less known. Using single-cell transcriptomic analysis of lamina propria fibroblasts, we identify fibroblastic reticular cells (FRCs) that underpin cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Genetic ablation of lymphotoxin-β receptor expression in Ccl19-expressing FRCs blocks the maturation of CPs into mature ILFs. Interactome analysis shows the major niche factors and processes underlying FRC-ILC crosstalk. In vivo validation confirms that a sustained lymphotoxin-driven feedforward loop of FRC activation including IL-7 generation is critical for the maintenance of functional ILC populations. In sum, our study indicates critical fibroblastic niches within the intestinal lamina propria that control ILC homeostasis and functionality and thereby secure protective gut immunity.

Suggested Citation

  • Hung-Wei Cheng & Urs Mörbe & Mechthild Lütge & Céline Engetschwiler & Lucas Onder & Mario Novkovic & Cristina Gil-Cruz & Christian Perez-Shibayama & Thomas Hehlgans & Elke Scandella & Burkhard Ludewig, 2022. "Intestinal fibroblastic reticular cell niches control innate lymphoid cell homeostasis and function," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29734-2
    DOI: 10.1038/s41467-022-29734-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29734-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29734-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank Michael Lehmann & Nicole von Burg & Robert Ivanek & Claudia Teufel & Edit Horvath & Annick Peter & Gleb Turchinovich & Daniel Staehli & Tobias Eichlisberger & Mercedes Gomez de Agüero & Mairene , 2020. "Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    2. Djahida Bouskra & Christophe Brézillon & Marion Bérard & Catherine Werts & Rosa Varona & Ivo Gomperts Boneca & Gérard Eberl, 2008. "Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis," Nature, Nature, vol. 456(7221), pages 507-510, November.
    3. Sean J. Morrison & David T. Scadden, 2014. "The bone marrow niche for haematopoietic stem cells," Nature, Nature, vol. 505(7483), pages 327-334, January.
    4. Sales Ibiza & Bethania García-Cassani & Hélder Ribeiro & Tânia Carvalho & Luís Almeida & Rute Marques & Ana M. Misic & Casey Bartow-McKenney & Denise M. Larson & William J. Pavan & Gérard Eberl & Eliz, 2016. "Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence," Nature, Nature, vol. 535(7612), pages 440-443, July.
    5. David Artis & Hergen Spits, 2015. "The biology of innate lymphoid cells," Nature, Nature, vol. 517(7534), pages 293-301, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuying Huang & Lin Zhu & Shipeng Cheng & Ranran Dai & Chunrong Huang & Yanyan Song & Bo Peng & Xuezhen Li & Jing Wen & Yi Gong & Yunqian Hu & Ling Qian & Linyun Zhu & Fengying Zhang & Li Yu & Chunyan , 2023. "Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary–lung axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Kerstin Thriene & Karin B. Michels, 2023. "Human Gut Microbiota Plasticity throughout the Life Course," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    4. Young-Woong Kim & Greta Zara & HyunJun Kang & Sergio Branciamore & Denis O’Meally & Yuxin Feng & Chia-Yi Kuan & Yingjun Luo & Michael S. Nelson & Alex B. Brummer & Russell Rockne & Zhen Bouman Chen & , 2022. "Integration of single-cell transcriptomes and biological function reveals distinct behavioral patterns in bone marrow endothelium," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Connor Sharp & Kevin R. Foster, 2022. "Host control and the evolution of cooperation in host microbiomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Bertha Estrella & Elena N. Naumova & Magda Cepeda & Trudy Voortman & Peter D. Katsikis & Hemmo A. Drexhage, 2019. "Effects of Air Pollution on Lung Innate Lymphoid Cells: Review of In Vitro and In Vivo Experimental Studies," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
    7. Jana H. Badrani & Allyssa N. Strohm & Lee Lacasa & Blake Civello & Kellen Cavagnero & Yung-An Haung & Michael Amadeo & Luay H. Naji & Sean J. Lund & Anthea Leng & Hyojoung Kim & Rachel E. Baum & Nasee, 2022. "RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Qiang Zhao & Young-Min Han & Ping Song & Zhixue Liu & Zuyi Yuan & Ming-Hui Zou, 2022. "Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Vaishnavi Nimbalkar & Manish Kamble & Jagdish Baheti, 2020. "In-Vitro Assay to Investigate the Anti-Inflammatory Activity of Hydroalcoholic Leaves Extract of Acacia Auriculiformis A.Cunn. Ex Benth," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 7(4), pages 07-09, April.
    11. Min Zhao & Fei Shao & Dou Yu & Jiaqi Zhang & Zhen Liu & Jiangwen Ma & Pengyan Xia & Shuo Wang, 2022. "Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Yoshiki Omatsu & Shota Aiba & Tomonori Maeta & Kei Higaki & Kazunari Aoki & Hitomi Watanabe & Gen Kondoh & Riko Nishimura & Shu Takeda & Ung-il Chung & Takashi Nagasawa, 2022. "Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Yinghui Li & Mei He & Wenshan Zhang & Wei Liu & Hui Xu & Ming Yang & Hexiao Zhang & Haiwei Liang & Wenjing Li & Zhaozhao Wu & Weichao Fu & Shiqi Xu & Xiaolei Liu & Sibin Fan & Liwei Zhou & Chaoqun Wan, 2023. "Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Nian Liu & Jiacheng He & Dongdong Fan & Yang Gu & Jianyi Wang & Huimu Li & Xiaoxiao Zhu & Ying Du & Yong Tian & Benyu Liu & Zusen Fan, 2022. "Circular RNA circTmem241 drives group III innate lymphoid cell differentiation via initiation of Elk3 transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29734-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.