IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51719-6.html
   My bibliography  Save this article

CTLA-4 expressing innate lymphoid cells modulate mucosal homeostasis in a microbiota dependent manner

Author

Listed:
  • Jonathan W. Lo

    (Imperial College London)

  • Jan-Hendrik Schroeder

    (King’s College London)

  • Luke B. Roberts

    (King’s College London
    University of Manchester)

  • Rami Mohamed

    (King’s College London)

  • Domenico Cozzetto

    (Imperial College London)

  • Gordon Beattie

    (University College London
    University College London)

  • Omer S. Omer

    (King’s College London)

  • Ellen M. Ross

    (Royal Free Campus)

  • Frank Heuts

    (Royal Free Campus)

  • Geraldine M. Jowett

    (King’s College London
    King’s College London
    King’s College London)

  • Emily Read

    (King’s College London)

  • Matthew Madgwick

    (Imperial College London
    Norwich Research Park
    Norwich Research Park)

  • Joana F. Neves

    (King’s College London)

  • Tamas Korcsmaros

    (Imperial College London
    Norwich Research Park
    Norwich Research Park)

  • Richard G. Jenner

    (University College London)

  • Lucy S. K. Walker

    (Royal Free Campus)

  • Nick Powell

    (Imperial College London)

  • Graham M. Lord

    (King’s College London
    University of Manchester)

Abstract

The maintenance of intestinal homeostasis is a fundamental process critical for organismal integrity. Sitting at the interface of the gut microbiome and mucosal immunity, adaptive and innate lymphoid populations regulate the balance between commensal micro-organisms and pathogens. Checkpoint inhibitors, particularly those targeting the CTLA-4 pathway, disrupt this fine balance and can lead to inflammatory bowel disease and immune checkpoint colitis. Here, we show that CTLA-4 is expressed by innate lymphoid cells and that its expression is regulated by ILC subset-specific cytokine cues in a microbiota-dependent manner. Genetic deletion or antibody blockade of CTLA-4 in multiple in vivo models of colitis demonstrates that this pathway plays a key role in intestinal homeostasis. Lastly, we have found that this observation is conserved in human IBD. We propose that this population of CTLA-4-positive ILC may serve as an important target for the treatment of idiopathic and iatrogenic intestinal inflammation.

Suggested Citation

  • Jonathan W. Lo & Jan-Hendrik Schroeder & Luke B. Roberts & Rami Mohamed & Domenico Cozzetto & Gordon Beattie & Omer S. Omer & Ellen M. Ross & Frank Heuts & Geraldine M. Jowett & Emily Read & Matthew M, 2024. "CTLA-4 expressing innate lymphoid cells modulate mucosal homeostasis in a microbiota dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51719-6
    DOI: 10.1038/s41467-024-51719-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51719-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51719-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Krista Dubin & Margaret K. Callahan & Boyu Ren & Raya Khanin & Agnes Viale & Lilan Ling & Daniel No & Asia Gobourne & Eric Littmann & Curtis Huttenhower & Eric G. Pamer & Jedd D. Wolchok, 2016. "Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
    2. Jonathan W. Lo & Domenico Cozzetto & James L. Alexander & Nathan P. Danckert & Matthew Madgwick & Naomi Knox & Jillian Yong Xin Sieh & Marton Olbei & Zhigang Liu & Hajir Ibraheim & Jesus Miguens Blanc, 2023. "Immune checkpoint inhibitor-induced colitis is mediated by polyfunctional lymphocytes and is dependent on an IL23/IFNγ axis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Sofia Buonocore & Philip P. Ahern & Holm H. Uhlig & Ivaylo I. Ivanov & Dan R. Littman & Kevin J. Maloy & Fiona Powrie, 2010. "Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology," Nature, Nature, vol. 464(7293), pages 1371-1375, April.
    4. David Artis & Hergen Spits, 2015. "The biology of innate lymphoid cells," Nature, Nature, vol. 517(7534), pages 293-301, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan W. Lo & Domenico Cozzetto & James L. Alexander & Nathan P. Danckert & Matthew Madgwick & Naomi Knox & Jillian Yong Xin Sieh & Marton Olbei & Zhigang Liu & Hajir Ibraheim & Jesus Miguens Blanc, 2023. "Immune checkpoint inhibitor-induced colitis is mediated by polyfunctional lymphocytes and is dependent on an IL23/IFNγ axis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Yuying Huang & Lin Zhu & Shipeng Cheng & Ranran Dai & Chunrong Huang & Yanyan Song & Bo Peng & Xuezhen Li & Jing Wen & Yi Gong & Yunqian Hu & Ling Qian & Linyun Zhu & Fengying Zhang & Li Yu & Chunyan , 2023. "Solar ultraviolet B radiation promotes α-MSH secretion to attenuate the function of ILC2s via the pituitary–lung axis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Ling Zhang & Yun-bo Wu & Yun-kai Dai & Qi Liu & Yu-jie Ren & Shi-jie Xu & Huai-geng Pan & Wei-jing Chen & Ru-liu Li & Ling Hu, 2021. "Efficacy and safety of Qingre-Chushi therapies in active ulcerative colitis: A network meta-analysis," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    4. Bertha Estrella & Elena N. Naumova & Magda Cepeda & Trudy Voortman & Peter D. Katsikis & Hemmo A. Drexhage, 2019. "Effects of Air Pollution on Lung Innate Lymphoid Cells: Review of In Vitro and In Vivo Experimental Studies," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
    5. Jana H. Badrani & Allyssa N. Strohm & Lee Lacasa & Blake Civello & Kellen Cavagnero & Yung-An Haung & Michael Amadeo & Luay H. Naji & Sean J. Lund & Anthea Leng & Hyojoung Kim & Rachel E. Baum & Nasee, 2022. "RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Vaishnavi Nimbalkar & Manish Kamble & Jagdish Baheti, 2020. "In-Vitro Assay to Investigate the Anti-Inflammatory Activity of Hydroalcoholic Leaves Extract of Acacia Auriculiformis A.Cunn. Ex Benth," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 7(4), pages 07-09, April.
    7. Hung-Wei Cheng & Urs Mörbe & Mechthild Lütge & Céline Engetschwiler & Lucas Onder & Mario Novkovic & Cristina Gil-Cruz & Christian Perez-Shibayama & Thomas Hehlgans & Elke Scandella & Burkhard Ludewig, 2022. "Intestinal fibroblastic reticular cell niches control innate lymphoid cell homeostasis and function," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Min Zhao & Fei Shao & Dou Yu & Jiaqi Zhang & Zhen Liu & Jiangwen Ma & Pengyan Xia & Shuo Wang, 2022. "Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Nian Liu & Jiacheng He & Dongdong Fan & Yang Gu & Jianyi Wang & Huimu Li & Xiaoxiao Zhu & Ying Du & Yong Tian & Benyu Liu & Zusen Fan, 2022. "Circular RNA circTmem241 drives group III innate lymphoid cell differentiation via initiation of Elk3 transcription," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51719-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.