IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48617-2.html
   My bibliography  Save this article

A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection

Author

Listed:
  • Yang Ping Kuo

    (Carnegie Mellon University
    Carnegie Mellon University)

  • César Nombela-Arrieta

    (University and University Hospital Zurich)

  • Oana Carja

    (Carnegie Mellon University)

Abstract

How the spatial arrangement of a population shapes its evolutionary dynamics has been of long-standing interest in population genetics. Most previous studies assume a small number of demes or symmetrical structures that, most often, act as well-mixed populations. Other studies use network theory to study more heterogeneous spatial structures, however they usually assume small, regular networks, or strong constraints on the strength of selection considered. Here we build network generation algorithms, conduct evolutionary simulations and derive general analytic approximations for probabilities of fixation in populations with complex spatial structure. We build a unifying evolutionary theory across network families and derive the relevant selective parameter, which is a combination of network statistics, predictive of evolutionary dynamics. We also illustrate how to link this theory with novel datasets of spatial organization and use recent imaging data to build the cellular spatial networks of the stem cell niches of the bone marrow. Across a wide variety of parameters, we find these networks to be strong suppressors of selection, delaying mutation accumulation in this tissue. We also find that decreases in stem cell population size also decrease the suppression strength of the tissue spatial structure.

Suggested Citation

  • Yang Ping Kuo & César Nombela-Arrieta & Oana Carja, 2024. "A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48617-2
    DOI: 10.1038/s41467-024-48617-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48617-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48617-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Allen & Gabor Lippner & Yu-Ting Chen & Babak Fotouhi & Naghmeh Momeni & Shing-Tung Yau & Martin A. Nowak, 2017. "Evolutionary dynamics on any population structure," Nature, Nature, vol. 544(7649), pages 227-230, April.
    2. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    3. Bartlomiej Waclaw & Ivana Bozic & Meredith E. Pittman & Ralph H. Hruban & Bert Vogelstein & Martin A. Nowak, 2015. "A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity," Nature, Nature, vol. 525(7568), pages 261-264, September.
    4. Erez Lieberman & Christoph Hauert & Martin A. Nowak, 2005. "Evolutionary dynamics on graphs," Nature, Nature, vol. 433(7023), pages 312-316, January.
    5. Alvaro Gomariz & Patrick M. Helbling & Stephan Isringhausen & Ute Suessbier & Anton Becker & Andreas Boss & Takashi Nagasawa & Grégory Paul & Orcun Goksel & Gábor Székely & Szymon Stoma & Simon F. Nør, 2018. "Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
    6. Constantina Christodoulou & Joel A. Spencer & Shu-Chi A. Yeh & Raphaël Turcotte & Konstantinos D. Kokkaliaris & Riccardo Panero & Azucena Ramos & Guoji Guo & Negar Seyedhassantehrani & Tatiana V. Esip, 2020. "Live-animal imaging of native haematopoietic stem and progenitor cells," Nature, Nature, vol. 578(7794), pages 278-283, February.
    7. Laura Hindersin & Arne Traulsen, 2015. "Most Undirected Random Graphs Are Amplifiers of Selection for Birth-Death Dynamics, but Suppressors of Selection for Death-Birth Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-14, November.
    8. Sean J. Morrison & David T. Scadden, 2014. "The bone marrow niche for haematopoietic stem cells," Nature, Nature, vol. 505(7483), pages 327-334, January.
    9. Carja, Oana & Creanza, Nicole, 2019. "The evolutionary advantage of cultural memory on heterogeneous contact networks," Theoretical Population Biology, Elsevier, vol. 129(C), pages 118-125.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamran Kaveh & Alex McAvoy & Krishnendu Chatterjee & Martin A Nowak, 2020. "The Moran process on 2-chromatic graphs," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-18, November.
    2. Josef Tkadlec & Andreas Pavlogiannis & Krishnendu Chatterjee & Martin A Nowak, 2020. "Limits on amplifiers of natural selection under death-Birth updating," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-13, January.
    3. Yinghui Li & Mei He & Wenshan Zhang & Wei Liu & Hui Xu & Ming Yang & Hexiao Zhang & Haiwei Liang & Wenjing Li & Zhaozhao Wu & Weichao Fu & Shiqi Xu & Xiaolei Liu & Sibin Fan & Liwei Zhou & Chaoqun Wan, 2023. "Expansion of human megakaryocyte-biased hematopoietic stem cells by biomimetic Microniche," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Yao Meng & Sean P. Cornelius & Yang-Yu Liu & Aming Li, 2024. "Dynamics of collective cooperation under personalised strategy updates," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Lv, Shaojie & Song, Feifei, 2022. "Particle swarm intelligence and the evolution of cooperation in the spatial public goods game with punishment," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    6. Benjamin Allen & Christine Sample & Robert Jencks & James Withers & Patricia Steinhagen & Lori Brizuela & Joshua Kolodny & Darren Parke & Gabor Lippner & Yulia A Dementieva, 2020. "Transient amplifiers of selection and reducers of fixation for death-Birth updating on graphs," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-20, January.
    7. McAvoy, Alex & Fraiman, Nicolas & Hauert, Christoph & Wakeley, John & Nowak, Martin A., 2018. "Public goods games in populations with fluctuating size," Theoretical Population Biology, Elsevier, vol. 121(C), pages 72-84.
    8. Liu, Xuesong & Pan, Qiuhui & He, Mingfeng & Liu, Aizhi, 2019. "Promotion of cooperation in evolutionary game dynamics under asymmetric information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 258-266.
    9. Christopher Graser & Takako Fujiwara-Greve & Julian García & Matthijs van Veelen, 2024. "Repeated games with partner choice," Tinbergen Institute Discussion Papers 24-038/I, Tinbergen Institute.
    10. Thomas Graham & Maria Kleshnina & Jerzy A. Filar, 2023. "Where Do Mistakes Lead? A Survey of Games with Incompetent Players," Dynamic Games and Applications, Springer, vol. 13(1), pages 231-264, March.
    11. Benjamin Allen & Christine Sample & Patricia Steinhagen & Julia Shapiro & Matthew King & Timothy Hedspeth & Megan Goncalves, 2021. "Fixation probabilities in graph-structured populations under weak selection," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-25, February.
    12. Hendrik Richter, 2020. "Evolution of Cooperation for Multiple Mutant Configurations on All Regular Graphs with N ≤ 14 Players," Games, MDPI, vol. 11(1), pages 1-18, February.
    13. Jorge Peña & Bin Wu & Jordi Arranz & Arne Traulsen, 2016. "Evolutionary Games of Multiplayer Cooperation on Graphs," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-15, August.
    14. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    15. Sarkar, Bijan, 2021. "The cooperation–defection evolution on social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    16. Li, Bin-Quan & Wu, Zhi-Xi & Guan, Jian-Yue, 2022. "Critical thresholds of benefit distribution in an extended snowdrift game model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Wang, Chaoqian & Szolnoki, Attila, 2023. "Inertia in spatial public goods games under weak selection," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    18. Mark Broom & Igor V. Erovenko & Jan Rychtář, 2021. "Modelling Evolution in Structured Populations Involving Multiplayer Interactions," Dynamic Games and Applications, Springer, vol. 11(2), pages 270-293, June.
    19. Yunming Xiao & Bin Wu, 2019. "Close spatial arrangement of mutants favors and disfavors fixation," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-20, September.
    20. Fernando Alcalde Cuesta & Pablo González Sequeiros & Álvaro Lozano Rojo, 2018. "Evolutionary regime transitions in structured populations," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48617-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.