IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55051-x.html
   My bibliography  Save this article

Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission

Author

Listed:
  • Tong Xing

    (Peking University
    Peking University)

  • Li-Juan Hu

    (Peking University)

  • Hong-Yan Zhao

    (Peking University)

  • Chen-Yuan Li

    (Peking University)

  • Zhen-Kun Wang

    (Peking University)

  • Meng-Zhu Shen

    (Peking University)

  • Zhong-Shi Lyu

    (Peking University)

  • Jing Wang

    (Peking University)

  • Yu Wang

    (Peking University)

  • Hao Jiang

    (Peking University)

  • Qian Jiang

    (Peking University)

  • Ying-Jun Chang

    (Peking University)

  • Xiao-Hui Zhang

    (Peking University)

  • Yuan Kong

    (Peking University)

  • Xiao-Jun Huang

    (Peking University
    Peking University)

Abstract

Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC). Importantly, HSC-supporting ability of BM EPCs is partially recovered, whereas leukemia-supporting ability is decreased in CR patients. Mechanistically, the transcriptome characteristics of leukemia-modified BM EPCs return to near-normal after CR. In a classic AML mouse and chemotherapy model, BM vasculature and normal hematopoiesis are reversed after CR. In summary, we provide further insights into how leukemia-modified BM microenvironment can be remodeled to support normal hematopoiesis after CR, which can be further improved by NAC.

Suggested Citation

  • Tong Xing & Li-Juan Hu & Hong-Yan Zhao & Chen-Yuan Li & Zhen-Kun Wang & Meng-Zhu Shen & Zhong-Shi Lyu & Jing Wang & Yu Wang & Hao Jiang & Qian Jiang & Ying-Jun Chang & Xiao-Hui Zhang & Yuan Kong & Xia, 2024. "Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55051-x
    DOI: 10.1038/s41467-024-55051-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55051-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55051-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. O. Akinduro & T. S. Weber & H. Ang & M. L. R. Haltalli & N. Ruivo & D. Duarte & N. M. Rashidi & E. D. Hawkins & K. R. Duffy & C. Lo Celso, 2018. "Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Edwin D. Hawkins & Delfim Duarte & Olufolake Akinduro & Reema A. Khorshed & Diana Passaro & Malgorzata Nowicka & Lenny Straszkowski & Mark K. Scott & Steve Rothery & Nicola Ruivo & Katie Foster & Mich, 2016. "T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments," Nature, Nature, vol. 538(7626), pages 518-522, October.
    3. Dorothy A. Sipkins & Xunbin Wei & Juwell W. Wu & Judith M. Runnels & Daniel Côté & Terry K. Means & Andrew D. Luster & David T. Scadden & Charles P. Lin, 2005. "In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment," Nature, Nature, vol. 435(7044), pages 969-973, June.
    4. Sean J. Morrison & David T. Scadden, 2014. "The bone marrow niche for haematopoietic stem cells," Nature, Nature, vol. 505(7483), pages 327-334, January.
    5. Lei Ding & Thomas L. Saunders & Grigori Enikolopov & Sean J. Morrison, 2012. "Endothelial and perivascular cells maintain haematopoietic stem cells," Nature, Nature, vol. 481(7382), pages 457-462, January.
    6. Elisa Laurenti & Berthold Göttgens, 2018. "From haematopoietic stem cells to complex differentiation landscapes," Nature, Nature, vol. 553(7689), pages 418-426, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiago C. Luis & Nikolaos Barkas & Joana Carrelha & Alice Giustacchini & Stefania Mazzi & Ruggiero Norfo & Bishan Wu & Affaf Aliouat & Jose A. Guerrero & Alba Rodriguez-Meira & Tiphaine Bouriez-Jones &, 2023. "Perivascular niche cells sense thrombocytopenia and activate hematopoietic stem cells in an IL-1 dependent manner," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Runfeng Miao & Harim Chun & Xing Feng & Ana Cordeiro Gomes & Jungmin Choi & João P. Pereira, 2022. "Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Qiang Zhao & Young-Min Han & Ping Song & Zhixue Liu & Zuyi Yuan & Ming-Hui Zou, 2022. "Endothelial cell-specific expression of serine/threonine kinase 11 modulates dendritic cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Georgia K. Atkin-Smith & Jascinta P. Santavanond & Amanda Light & Joel S. Rimes & Andre L. Samson & Jeremy Er & Joy Liu & Darryl N. Johnson & Mélanie Le Page & Pradeep Rajasekhar & Raymond K. H. Yip &, 2024. "In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Yoshiki Omatsu & Shota Aiba & Tomonori Maeta & Kei Higaki & Kazunari Aoki & Hitomi Watanabe & Gen Kondoh & Riko Nishimura & Shu Takeda & Ung-il Chung & Takashi Nagasawa, 2022. "Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Mina N. F. Morcos & Congxin Li & Clara M. Munz & Alessandro Greco & Nicole Dressel & Susanne Reinhardt & Katrin Sameith & Andreas Dahl & Nils B. Becker & Axel Roers & Thomas Höfer & Alexander Gerbaule, 2022. "Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Raymond K. H. Yip & Joel S. Rimes & Bianca D. Capaldo & François Vaillant & Kellie A. Mouchemore & Bhupinder Pal & Yunshun Chen & Elliot Surgenor & Andrew J. Murphy & Robin L. Anderson & Gordon K. Smy, 2021. "Mammary tumour cells remodel the bone marrow vascular microenvironment to support metastasis," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Yang Liu & Qi Chen & Hyun-Woo Jeong & Bong Ihn Koh & Emma C. Watson & Cong Xu & Martin Stehling & Bin Zhou & Ralf H. Adams, 2022. "A specialized bone marrow microenvironment for fetal haematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Taichi Nakatani & Tatsuki Sugiyama & Yoshiki Omatsu & Hitomi Watanabe & Gen Kondoh & Takashi Nagasawa, 2023. "Ebf3+ niche-derived CXCL12 is required for the localization and maintenance of hematopoietic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Narasaiah Kovuru & Makiko Mochizuki-Kashio & Theresa Menna & Greer Jeffrey & Yuning Hong & Young me Yoon & Zhe Zhang & Peter Kurre, 2024. "Deregulated protein homeostasis constrains fetal hematopoietic stem cell pool expansion in Fanconi anemia," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Young-Woong Kim & Greta Zara & HyunJun Kang & Sergio Branciamore & Denis O’Meally & Yuxin Feng & Chia-Yi Kuan & Yingjun Luo & Michael S. Nelson & Alex B. Brummer & Russell Rockne & Zhen Bouman Chen & , 2022. "Integration of single-cell transcriptomes and biological function reveals distinct behavioral patterns in bone marrow endothelium," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Hyuek Jong Lee & Jueun Lee & Myung Jin Yang & Young-Chan Kim & Seon Pyo Hong & Jung Mo Kim & Geum-Sook Hwang & Gou Young Koh, 2023. "Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Dorothee Bornhorst & Amulya V. Hejjaji & Lena Steuter & Nicole M. Woodhead & Paul Maier & Alessandra Gentile & Alice Alhajkadour & Octavia Santis Larrain & Michael Weber & Khrievono Kikhi & Stefan Gue, 2024. "The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Yang Ping Kuo & César Nombela-Arrieta & Oana Carja, 2024. "A theory of evolutionary dynamics on any complex population structure reveals stem cell niche architecture as a spatial suppressor of selection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Christina M. Termini & Amara Pang & Tiancheng Fang & Martina Roos & Vivian Y. Chang & Yurun Zhang & Nicollette J. Setiawan & Lia Signaevskaia & Michelle Li & Mindy M. Kim & Orel Tabibi & Paulina K. Li, 2021. "Neuropilin 1 regulates bone marrow vascular regeneration and hematopoietic reconstitution," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    16. Xue Zhong & Nagesh Peddada & Jianhui Wang & James J. Moresco & Xiaowei Zhan & John M. Shelton & Jeffrey A. SoRelle & Katie Keller & Danielle Renee Lazaro & Eva Marie Y. Moresco & Jin Huk Choi & Bruce , 2023. "OVOL2 sustains postnatal thymic epithelial cell identity," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    17. Eri Takematsu & Miles Massidda & Jeff Auster & Po-Chih Chen & ByungGee Im & Sanjana Srinath & Sophia Canga & Aditya Singh & Marjan Majid & Michael Sherman & Andrew Dunn & Annette Graham & Patricia Mar, 2022. "Transmembrane stem cell factor protein therapeutics enhance revascularization in ischemia without mast cell activation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Kiyoka Saito & Mark Garde & Terumasa Umemoto & Natsumi Miharada & Julia Sjöberg & Valgardur Sigurdsson & Haruki Shirozu & Shunsuke Kamei & Visnja Radulovic & Mitsuyoshi Suzuki & Satoshi Nakano & Stefa, 2024. "Lipoprotein metabolism mediates hematopoietic stem cell responses under acute anemic conditions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    19. Yuxuan Liu & Zhimin Gu & Hui Cao & Pranita Kaphle & Junhua Lyu & Yuannyu Zhang & Wenhuo Hu & Stephen S. Chung & Kathryn E. Dickerson & Jian Xu, 2021. "Convergence of oncogenic cooperation at single-cell and single-gene levels drives leukemic transformation," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    20. Qiang Shan & Xiang Li & Xia Chen & Zhouhao Zeng & Shaoqi Zhu & Kexin Gai & Weiqun Peng & Hai-Hui Xue, 2021. "Tcf1 and Lef1 provide constant supervision to mature CD8+ T cell identity and function by organizing genomic architecture," Nature Communications, Nature, vol. 12(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55051-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.