IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29727-1.html
   My bibliography  Save this article

Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing

Author

Listed:
  • Rohit Abraham John

    (Institute of Inorganic Chemistry, ETH Zürich
    Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Yiğit Demirağ

    (University of Zurich and ETH Zurich)

  • Yevhen Shynkarenko

    (Institute of Inorganic Chemistry, ETH Zürich
    Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Yuliia Berezovska

    (Institute of Inorganic Chemistry, ETH Zürich
    Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Natacha Ohannessian

    (Institute of Inorganic Chemistry, ETH Zürich
    Paul Scherrer Institute)

  • Melika Payvand

    (University of Zurich and ETH Zurich)

  • Peng Zeng

    (ETH Zürich, The Scientific Center for Optical and Electron Microscopy (ScopeM))

  • Maryna I. Bodnarchuk

    (Institute of Inorganic Chemistry, ETH Zürich
    Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Frank Krumeich

    (Institute of Inorganic Chemistry, ETH Zürich)

  • Gökhan Kara

    (Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Ivan Shorubalko

    (Empa-Swiss Federal Laboratories for Materials Science and Technology)

  • Manu V. Nair

    (Synthara AG)

  • Graham A. Cooke

    (Hiden Analytical Ltd)

  • Thomas Lippert

    (Institute of Inorganic Chemistry, ETH Zürich
    Paul Scherrer Institute)

  • Giacomo Indiveri

    (University of Zurich and ETH Zurich)

  • Maksym V. Kovalenko

    (Institute of Inorganic Chemistry, ETH Zürich
    Empa-Swiss Federal Laboratories for Materials Science and Technology)

Abstract

Many in-memory computing frameworks demand electronic devices with specific switching characteristics to achieve the desired level of computational complexity. Existing memristive devices cannot be reconfigured to meet the diverse volatile and non-volatile switching requirements, and hence rely on tailored material designs specific to the targeted application, limiting their universality. “Reconfigurable memristors” that combine both ionic diffusive and drift mechanisms could address these limitations, but they remain elusive. Here we present a reconfigurable halide perovskite nanocrystal memristor that achieves on-demand switching between diffusive/volatile and drift/non-volatile modes by controllable electrochemical reactions. Judicious selection of the perovskite nanocrystals and organic capping ligands enable state-of-the-art endurance performances in both modes – volatile (2 × 106 cycles) and non-volatile (5.6 × 103 cycles). We demonstrate the relevance of such proof-of-concept perovskite devices on a benchmark reservoir network with volatile recurrent and non-volatile readout layers based on 19,900 measurements across 25 dynamically-configured devices.

Suggested Citation

  • Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29727-1
    DOI: 10.1038/s41467-022-29727-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29727-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29727-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chao Du & Fuxi Cai & Mohammed A. Zidan & Wen Ma & Seung Hwan Lee & Wei D. Lu, 2017. "Reservoir computing using dynamic memristors for temporal information processing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    2. Sören Boyn & Julie Grollier & Gwendal Lecerf & Bin Xu & Nicolas Locatelli & Stéphane Fusil & Stéphanie Girod & Cécile Carrétéro & Karin Garcia & Stéphane Xavier & Jean Tomas & Laurent Bellaiche & Manu, 2017. "Learning through ferroelectric domain dynamics in solid-state synapses," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    3. Makhsud I. Saidaminov & Valerio Adinolfi & Riccardo Comin & Ahmed L. Abdelhady & Wei Peng & Ibrahim Dursun & Mingjian Yuan & Sjoerd Hoogland & Edward H. Sargent & Osman M. Bakr, 2015. "Planar-integrated single-crystalline perovskite photodetectors," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    4. Irem Boybat & Manuel Le Gallo & S. R. Nandakumar & Timoleon Moraitis & Thomas Parnell & Tomas Tuma & Bipin Rajendran & Yusuf Leblebici & Abu Sebastian & Evangelos Eleftheriou, 2018. "Neuromorphic computing with multi-memristive synapses," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    5. Suhas Kumar & R. Stanley Williams & Ziwen Wang, 2020. "Third-order nanocircuit elements for neuromorphic engineering," Nature, Nature, vol. 585(7826), pages 518-523, September.
    6. Yasser Hassan & Jong Hyun Park & Michael L. Crawford & Aditya Sadhanala & Jeongjae Lee & James C. Sadighian & Edoardo Mosconi & Ravichandran Shivanna & Eros Radicchi & Mingyu Jeong & Changduk Yang & H, 2021. "Ligand-engineered bandgap stability in mixed-halide perovskite LEDs," Nature, Nature, vol. 591(7848), pages 72-77, March.
    7. Rohit Abraham John & Jyotibdha Acharya & Chao Zhu & Abhijith Surendran & Sumon Kumar Bose & Apoorva Chaturvedi & Nidhi Tiwari & Yang Gao & Yongmin He & Keke K. Zhang & Manzhang Xu & Wei Lin Leong & Zh, 2020. "Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    9. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    10. Xiaojian Zhu & Qiwen Wang & Wei D. Lu, 2020. "Memristor networks for real-time neural activity analysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    11. M. R. Mahmoodi & M. Prezioso & D. B. Strukov, 2019. "Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    12. Jaeki Jeong & Minjin Kim & Jongdeuk Seo & Haizhou Lu & Paramvir Ahlawat & Aditya Mishra & Yingguo Yang & Michael A. Hope & Felix T. Eickemeyer & Maengsuk Kim & Yung Jin Yoon & In Woo Choi & Barbara Pr, 2021. "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, Nature, vol. 592(7854), pages 381-385, April.
    13. Guillaume Bellec & Franz Scherr & Anand Subramoney & Elias Hajek & Darjan Salaj & Robert Legenstein & Wolfgang Maass, 2020. "A solution to the learning dilemma for recurrent networks of spiking neurons," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone D’Agostino & Filippo Moro & Tristan Torchet & Yiğit Demirağ & Laurent Grenouillet & Niccolò Castellani & Giacomo Indiveri & Elisa Vianello & Melika Payvand, 2024. "DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Kwon, Osung & Kim, Sungjun & Agudov, Nikolay & Krichigin, Alexey & Mikhaylov, Alexey & Grimaudo, Roberto & Valenti, Davide & Spagnolo, Bernardo, 2022. "Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Koryazhkina, M.N. & Filatov, D.O. & Shishmakova, V.A. & Shenina, M.E. & Belov, A.I. & Antonov, I.N. & Kotomina, V.E. & Mikhaylov, A.N. & Gorshkov, O.N. & Agudov, N.V. & Guarcello, C. & Carollo, A. & S, 2022. "Resistive state relaxation time in ZrO2(Y)-based memristive devices under the influence of external noise," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    9. Karnan, A. & Nagamani, G., 2022. "Non-fragile state estimation for memristive cellular neural networks with proportional delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 217-231.
    10. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    12. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Yuchun Zhang & Lin Liu & Bin Tu & Bin Cui & Jiahui Guo & Xing Zhao & Jingyu Wang & Yong Yan, 2023. "An artificial synapse based on molecular junctions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    15. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Jaehyun Kang & Taeyoon Kim & Suman Hu & Jaewook Kim & Joon Young Kwak & Jongkil Park & Jong Keuk Park & Inho Kim & Suyoun Lee & Sangbum Kim & YeonJoo Jeong, 2022. "Cluster-type analogue memristor by engineering redox dynamics for high-performance neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Dong, Shiyu & Zhu, Hong & Zhong, Shouming & Shi, Kaibo & Liu, Yajuan, 2021. "New study on fixed-time synchronization control of delayed inertial memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 399(C).
    20. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29727-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.