IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29260-1.html
   My bibliography  Save this article

Rotating neurons for all-analog implementation of cyclic reservoir computing

Author

Listed:
  • Xiangpeng Liang

    (Tsinghua University
    University of Glasgow)

  • Yanan Zhong

    (Tsinghua University
    Soochow University)

  • Jianshi Tang

    (Tsinghua University
    Tsinghua University)

  • Zhengwu Liu

    (Tsinghua University)

  • Peng Yao

    (Tsinghua University)

  • Keyang Sun

    (Tsinghua University)

  • Qingtian Zhang

    (Tsinghua University
    Tsinghua University)

  • Bin Gao

    (Tsinghua University
    Tsinghua University)

  • Hadi Heidari

    (University of Glasgow)

  • He Qian

    (Tsinghua University
    Tsinghua University)

  • Huaqiang Wu

    (Tsinghua University
    Tsinghua University)

Abstract

Hardware implementation in resource-efficient reservoir computing is of great interest for neuromorphic engineering. Recently, various devices have been explored to implement hardware-based reservoirs. However, most studies were mainly focused on the reservoir layer, whereas an end-to-end reservoir architecture has yet to be developed. Here, we propose a versatile method for implementing cyclic reservoirs using rotating elements integrated with signal-driven dynamic neurons, whose equivalence to standard cyclic reservoir algorithm is mathematically proven. Simulations show that the rotating neuron reservoir achieves record-low errors in a nonlinear system approximation benchmark. Furthermore, a hardware prototype was developed for near-sensor computing, chaotic time-series prediction and handwriting classification. By integrating a memristor array as a fully-connected output layer, the all-analog reservoir computing system achieves 94.0% accuracy, while simulation shows >1000× lower system-level power than prior works. Therefore, our work demonstrates an elegant rotation-based architecture that explores hardware physics as computational resources for high-performance reservoir computing.

Suggested Citation

  • Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29260-1
    DOI: 10.1038/s41467-022-29260-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29260-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29260-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vinay Joshi & Manuel Le Gallo & Simon Haefeli & Irem Boybat & S. R. Nandakumar & Christophe Piveteau & Martino Dazzi & Bipin Rajendran & Abu Sebastian & Evangelos Eleftheriou, 2020. "Accurate deep neural network inference using computational phase-change memory," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    2. Chao Du & Fuxi Cai & Mohammed A. Zidan & Wen Ma & Seung Hwan Lee & Wei D. Lu, 2017. "Reservoir computing using dynamic memristors for temporal information processing," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Daniel Brunner & Miguel C. Soriano & Claudio R. Mirasso & Ingo Fischer, 2013. "Parallel photonic information processing at gigabyte per second data rates using transient states," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
    4. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    5. L. Appeltant & M.C. Soriano & G. Van der Sande & J. Danckaert & S. Massar & J. Dambre & B. Schrauwen & C.R. Mirasso & I. Fischer, 2011. "Information processing using a single dynamical node as complex system," Nature Communications, Nature, vol. 2(1), pages 1-6, September.
    6. Yanan Zhong & Jianshi Tang & Xinyi Li & Bin Gao & He Qian & Huaqiang Wu, 2021. "Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Zhengwu Liu & Jianshi Tang & Bin Gao & Peng Yao & Xinyi Li & Dingkun Liu & Ying Zhou & He Qian & Bo Hong & Huaqiang Wu, 2020. "Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Jacob Torrejon & Mathieu Riou & Flavio Abreu Araujo & Sumito Tsunegi & Guru Khalsa & Damien Querlioz & Paolo Bortolotti & Vincent Cros & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa , 2017. "Neuromorphic computing with nanoscale spintronic oscillators," Nature, Nature, vol. 547(7664), pages 428-431, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yanming Liu & He Tian & Fan Wu & Anhan Liu & Yihao Li & Hao Sun & Mario Lanza & Tian-Ling Ren, 2023. "Cellular automata imbedded memristor-based recirculated logic in-memory computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Min Yan & Can Huang & Peter Bienstman & Peter Tino & Wei Lin & Jie Sun, 2024. "Emerging opportunities and challenges for the future of reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Zhuohui Liu & Qinghua Zhang & Donggang Xie & Mingzhen Zhang & Xinyan Li & Hai Zhong & Ge Li & Meng He & Dashan Shang & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2023. "Interface-type tunable oxygen ion dynamics for physical reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Ali Momeni & Romain Fleury, 2022. "Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Lukas Körber & Christopher Heins & Tobias Hula & Joo-Von Kim & Sonia Thlang & Helmut Schultheiss & Jürgen Fassbender & Katrin Schultheiss, 2023. "Pattern recognition in reciprocal space with a magnon-scattering reservoir," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Yulin Feng & Yizhou Zhang & Zheng Zhou & Peng Huang & Lifeng Liu & Xiaoyan Liu & Jinfeng Kang, 2024. "Memristor-based storage system with convolutional autoencoder-based image compression network," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    15. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. See-On Park & Hakcheon Jeong & Jongyong Park & Jongmin Bae & Shinhyun Choi, 2022. "Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Ik-Jyae Kim & Min-Kyu Kim & Jang-Sik Lee, 2023. "Highly-scaled and fully-integrated 3-dimensional ferroelectric transistor array for hardware implementation of neural networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Sanghyeon Choi & Jaeho Shin & Gwanyeong Park & Jung Sun Eo & Jingon Jang & J. Joshua Yang & Gunuk Wang, 2024. "3D-integrated multilayered physical reservoir array for learning and forecasting time-series information," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Han Zhao & Zhengwu Liu & Jianshi Tang & Bin Gao & Qi Qin & Jiaming Li & Ying Zhou & Peng Yao & Yue Xi & Yudeng Lin & He Qian & Huaqiang Wu, 2023. "Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29260-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.