IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-13103-7.html
   My bibliography  Save this article

Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization

Author

Listed:
  • M. R. Mahmoodi

    (University of California Santa Barbara)

  • M. Prezioso

    (University of California Santa Barbara)

  • D. B. Strukov

    (University of California Santa Barbara)

Abstract

The key operation in stochastic neural networks, which have become the state-of-the-art approach for solving problems in machine learning, information theory, and statistics, is a stochastic dot-product. While there have been many demonstrations of dot-product circuits and, separately, of stochastic neurons, the efficient hardware implementation combining both functionalities is still missing. Here we report compact, fast, energy-efficient, and scalable stochastic dot-product circuits based on either passively integrated metal-oxide memristors or embedded floating-gate memories. The circuit’s high performance is due to mixed-signal implementation, while the efficient stochastic operation is achieved by utilizing circuit’s noise, intrinsic and/or extrinsic to the memory cell array. The dynamic scaling of weights, enabled by analog memory devices, allows for efficient realization of different annealing approaches to improve functionality. The proposed approach is experimentally verified for two representative applications, namely by implementing neural network for solving a four-node graph-partitioning problem, and a Boltzmann machine with 10-input and 8-hidden neurons.

Suggested Citation

  • M. R. Mahmoodi & M. Prezioso & D. B. Strukov, 2019. "Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13103-7
    DOI: 10.1038/s41467-019-13103-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-13103-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-13103-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tinish Bhattacharya & George H. Hutchinson & Giacomo Pedretti & Xia Sheng & Jim Ignowski & Thomas Vaerenbergh & Ray Beausoleil & John Paul Strachan & Dmitri B. Strukov, 2024. "Computing high-degree polynomial gradients in memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. S. Bianchi & I. Muñoz-Martin & E. Covi & A. Bricalli & G. Piccolboni & A. Regev & G. Molas & J. F. Nodin & F. Andrieu & D. Ielmini, 2023. "A self-adaptive hardware with resistive switching synapses for experience-based neurocomputing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Mingrui Jiang & Keyi Shan & Chengping He & Can Li, 2023. "Efficient combinatorial optimization by quantum-inspired parallel annealing in analogue memristor crossbar," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-13103-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.