Learning through ferroelectric domain dynamics in solid-state synapses
Author
Abstract
Suggested Citation
DOI: 10.1038/ncomms14736
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rengjian Yu & Lihua He & Changsong Gao & Xianghong Zhang & Enlong Li & Tailiang Guo & Wenwu Li & Huipeng Chen, 2022. "Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Guangdi Feng & Qiuxiang Zhu & Xuefeng Liu & Luqiu Chen & Xiaoming Zhao & Jianquan Liu & Shaobing Xiong & Kexiang Shan & Zhenzhong Yang & Qinye Bao & Fangyu Yue & Hui Peng & Rong Huang & Xiaodong Tang , 2024. "A ferroelectric fin diode for robust non-volatile memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Tao Li & Yongyi Wu & Guoliang Yu & Shengxian Li & Yifeng Ren & Yadong Liu & Jiarui Liu & Hao Feng & Yu Deng & Mingxing Chen & Zhenyu Zhang & Tai Min, 2024. "Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
- Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Zhen Luo & Zijian Wang & Zeyu Guan & Chao Ma & Letian Zhao & Chuanchuan Liu & Haoyang Sun & He Wang & Yue Lin & Xi Jin & Yuewei Yin & Xiaoguang Li, 2022. "High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Fei Xue & Xin He & Yinchang Ma & Dongxing Zheng & Chenhui Zhang & Lain-Jong Li & Jr-Hau He & Bin Yu & Xixiang Zhang, 2021. "Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms14736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.