IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16261-1.html
   My bibliography  Save this article

Memristor networks for real-time neural activity analysis

Author

Listed:
  • Xiaojian Zhu

    (The University of Michigan)

  • Qiwen Wang

    (The University of Michigan)

  • Wei D. Lu

    (The University of Michigan)

Abstract

The ability to efficiently analyze the activities of biological neural networks can significantly promote our understanding of neural communications and functionalities. However, conventional neural signal analysis approaches need to transmit and store large amounts of raw recording data, followed by extensive processing offline, posing significant challenges to the hardware and preventing real-time analysis and feedback. Here, we demonstrate a memristor-based reservoir computing (RC) system that can potentially analyze neural signals in real-time. We show that the perovskite halide-based memristor can be directly driven by emulated neural spikes, where the memristor state reflects temporal features in the neural spike train. The RC system is successfully used to recognize neural firing patterns, monitor the transition of the firing patterns, and identify neural synchronization states among different neurons. Advanced neuroelectronic systems with such memristor networks can enable efficient neural signal analysis with high spatiotemporal precision, and possibly closed-loop feedback control.

Suggested Citation

  • Xiaojian Zhu & Qiwen Wang & Wei D. Lu, 2020. "Memristor networks for real-time neural activity analysis," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16261-1
    DOI: 10.1038/s41467-020-16261-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16261-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16261-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jangsaeng Kim & Eun Chan Park & Wonjun Shin & Ryun-Han Koo & Chang-Hyeon Han & He Young Kang & Tae Gyu Yang & Youngin Goh & Kilho Lee & Daewon Ha & Suraj S. Cheema & Jae Kyeong Jeong & Daewoong Kwon, 2024. "Analog reservoir computing via ferroelectric mixed phase boundary transistors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Choi, Woo Sik & Kim, Donguk & Yang, Tae Jun & Chae, Inseok & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Electrode-dependent electrical switching characteristics of InGaZnO memristor," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Karnan, A. & Nagamani, G., 2022. "Non-fragile state estimation for memristive cellular neural networks with proportional delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 217-231.
    4. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yuchun Zhang & Lin Liu & Bin Tu & Bin Cui & Jiahui Guo & Xing Zhao & Jingyu Wang & Yong Yan, 2023. "An artificial synapse based on molecular junctions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ryu, Hojeong & Kim, Sungjun, 2021. "Implementation of a reservoir computing system using the short-term effects of Pt/HfO2/TaOx/TiN memristors with self-rectification," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    8. Choi, Woo Sik & Jang, Jun Tae & Kim, Donguk & Yang, Tae Jun & Kim, Changwook & Kim, Hyungjin & Kim, Dae Hwan, 2022. "Influence of Al2O3 layer on InGaZnO memristor crossbar array for neuromorphic applications," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Surazhevsky, I.A. & Demin, V.A. & Ilyasov, A.I. & Emelyanov, A.V. & Nikiruy, K.E. & Rylkov, V.V. & Shchanikov, S.A. & Bordanov, I.A. & Gerasimova, S.A. & Guseinov, D.V. & Malekhonova, N.V. & Pavlov, D, 2021. "Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    10. Li, Zhijun & Chen, Kaijie, 2023. "Neuromorphic behaviors in a neuron circuit based on current-controlled Chua Corsage Memristor," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16261-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.