IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45992-8.html
   My bibliography  Save this article

High-order sensory processing nanocircuit based on coupled VO2 oscillators

Author

Listed:
  • Ke Yang

    (Peking University)

  • Yanghao Wang

    (Peking University)

  • Pek Jun Tiw

    (Peking University)

  • Chaoming Wang

    (Peking University)

  • Xiaolong Zou

    (Peking University)

  • Rui Yuan

    (Peking University)

  • Chang Liu

    (Peking University)

  • Ge Li

    (Chinese Academy of Sciences)

  • Chen Ge

    (Chinese Academy of Sciences)

  • Si Wu

    (Peking University)

  • Teng Zhang

    (Peking University)

  • Ru Huang

    (Peking University)

  • Yuchao Yang

    (Peking University
    Peking University
    Peking University
    Chinese Institute for Brain Research (CIBR))

Abstract

Conventional circuit elements are constrained by limitations in area and power efficiency at processing physical signals. Recently, researchers have delved into high-order dynamics and coupled oscillation dynamics utilizing Mott devices, revealing potent nonlinear computing capabilities. However, the intricate yet manageable population dynamics of multiple artificial sensory neurons with spatiotemporal coupling remain unexplored. Here, we present an experimental hardware demonstration featuring a capacitance-coupled VO2 phase-change oscillatory network. This network serves as a continuous-time dynamic system for sensory pre-processing and encodes information in phase differences. Besides, a decision-making module for special post-processing through software simulation is designed to complete a bio-inspired dynamic sensory system. Our experiments provide compelling evidence that this transistor-free coupling network excels in sensory processing tasks such as touch recognition and gesture recognition, achieving significant advantages of fewer devices and lower energy-delay-product compared to conventional methods. This work paves the way towards an efficient and compact neuromorphic sensory system based on nano-scale nonlinear dynamics.

Suggested Citation

  • Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45992-8
    DOI: 10.1038/s41467-024-45992-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45992-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45992-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suhas Kumar & John Paul Strachan & R. Stanley Williams, 2017. "Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing," Nature, Nature, vol. 548(7667), pages 318-321, August.
    2. Pengfei Wei & Nan Liu & Zhijian Zhang & Xuemei Liu & Yongqiang Tang & Xiaobin He & Bifeng Wu & Zheng Zhou & Yaohan Liu & Juan Li & Yi Zhang & Xuanyi Zhou & Lin Xu & Lin Chen & Guoqiang Bi & Xintian Hu, 2015. "Processing of visually evoked innate fear by a non-canonical thalamic pathway," Nature Communications, Nature, vol. 6(1), pages 1-13, November.
    3. Wei Yi & Kenneth K. Tsang & Stephen K. Lam & Xiwei Bai & Jack A. Crowell & Elias A. Flores, 2018. "Biological plausibility and stochasticity in scalable VO2 active memristor neurons," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Suhas Kumar & R. Stanley Williams & Ziwen Wang, 2020. "Third-order nanocircuit elements for neuromorphic engineering," Nature, Nature, vol. 585(7826), pages 518-523, September.
    5. Miguel Romera & Philippe Talatchian & Sumito Tsunegi & Flavio Abreu Araujo & Vincent Cros & Paolo Bortolotti & Juan Trastoy & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa & Maxence E, 2018. "Vowel recognition with four coupled spin-torque nano-oscillators," Nature, Nature, vol. 563(7730), pages 230-234, November.
    6. Dmitri B. Strukov & Gregory S. Snider & Duncan R. Stewart & R. Stanley Williams, 2008. "The missing memristor found," Nature, Nature, vol. 453(7191), pages 80-83, May.
    7. Lukas Mennel & Joanna Symonowicz & Stefan Wachter & Dmitry K. Polyushkin & Aday J. Molina-Mendoza & Thomas Mueller, 2020. "Ultrafast machine vision with 2D material neural network image sensors," Nature, Nature, vol. 579(7797), pages 62-66, March.
    8. Suhas Kumar & Ziwen Wang & Noraica Davila & Niru Kumari & Kate J. Norris & Xiaopeng Huang & John Paul Strachan & David Vine & A.L. David Kilcoyne & Yoshio Nishi & R. Stanley Williams, 2017. "Physical origins of current and temperature controlled negative differential resistances in NbO2," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    9. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Sourav Dutta & Abhinav Parihar & Abhishek Khanna & Jorge Gomez & Wriddhi Chakraborty & Matthew Jerry & Benjamin Grisafe & Arijit Raychowdhury & Suman Datta, 2019. "Programmable coupled oscillators for synchronized locomotion," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    11. Hongwei Tan & Quanzheng Tao & Ishan Pande & Sayani Majumdar & Fu Liu & Yifan Zhou & Per O. Å. Persson & Johanna Rosen & Sebastiaan van Dijken, 2020. "Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    12. Jacob Torrejon & Mathieu Riou & Flavio Abreu Araujo & Sumito Tsunegi & Guru Khalsa & Damien Querlioz & Paolo Bortolotti & Vincent Cros & Kay Yakushiji & Akio Fukushima & Hitoshi Kubota & Shinji Yuasa , 2017. "Neuromorphic computing with nanoscale spintronic oscillators," Nature, Nature, vol. 547(7664), pages 428-431, July.
    13. Jung Ho Yoon & Zhongrui Wang & Kyung Min Kim & Huaqiang Wu & Vignesh Ravichandran & Qiangfei Xia & Cheol Seong Hwang & J. Joshua Yang, 2018. "An artificial nociceptor based on a diffusive memristor," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Li & Zhongshao Li & Wei Tang & Jiaping Yao & Zhipeng Dou & Junjie Gong & Yongfei Li & Beining Zhang & Yunxiao Dong & Jian Xia & Lin Sun & Peng Jiang & Xun Cao & Rui Yang & Xiangshui Miao & Ron, 2024. "Crossmodal sensory neurons based on high-performance flexible memristors for human-machine in-sensor computing system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Dong, Yujiao & Yang, Shuting & Liang, Yan & Wang, Guangyi, 2022. "Neuromorphic dynamics near the edge of chaos in memristive neurons," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    4. Ushakov, Yury & Akther, Amir & Borisov, Pavel & Pattnaik, Debi & Savel’ev, Sergey & Balanov, Alexander G., 2021. "Deterministic mechanisms of spiking in diffusive memristors," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    5. Sang Hyun Sung & Tae Jin Kim & Hyera Shin & Tae Hong Im & Keon Jae Lee, 2022. "Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Kyung Seok Woo & Alan Zhang & Allison Arabelo & Timothy D. Brown & Minseong Park & A. Alec Talin & Elliot J. Fuller & Ravindra Singh Bisht & Xiaofeng Qian & Raymundo Arroyave & Shriram Ramanathan & Lu, 2024. "True random number generation using the spin crossover in LaCoO3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Chang Liu & Pek Jun Tiw & Teng Zhang & Yanghao Wang & Lei Cai & Rui Yuan & Zelun Pan & Wenshuo Yue & Yaoyu Tao & Yuchao Yang, 2024. "VO2 memristor-based frequency converter with in-situ synthesize and mix for wireless internet-of-things," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Hakseung Rhee & Gwangmin Kim & Hanchan Song & Woojoon Park & Do Hoon Kim & Jae Hyun In & Younghyun Lee & Kyung Min Kim, 2023. "Probabilistic computing with NbOx metal-insulator transition-based self-oscillatory pbit," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    11. Ying, Jiajie & Min, Fuhong & Wang, Guangyi, 2023. "Neuromorphic behaviors of VO2 memristor-based neurons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    12. Rui Yuan & Pek Jun Tiw & Lei Cai & Zhiyu Yang & Chang Liu & Teng Zhang & Chen Ge & Ru Huang & Yuchao Yang, 2023. "A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Yuan-Hang Zhang & Chesson Sipling & Erbin Qiu & Ivan K. Schuller & Massimiliano Di Ventra, 2024. "Collective dynamics and long-range order in thermal neuristor networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Ushakov, Yury & Balanov, Alexander & Savel’ev, Sergey, 2021. "Role of noise in spiking dynamics of diffusive memristor driven by heating-cooling cycles," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Yan Sun & Shuting Xu & Zheqi Xu & Jiamin Tian & Mengmeng Bai & Zhiying Qi & Yue Niu & Hein Htet Aung & Xiaolu Xiong & Junfeng Han & Cuicui Lu & Jianbo Yin & Sheng Wang & Qing Chen & Reshef Tenne & All, 2022. "Mesoscopic sliding ferroelectricity enabled photovoltaic random access memory for material-level artificial vision system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Ying, Jiajie & Liang, Yan & Wang, Junlan & Dong, Yujiao & Wang, Guangyi & Gu, Meiyuan, 2021. "A tristable locally-active memristor and its complex dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Martina Ahlberg & Sunjae Chung & Sheng Jiang & Andreas Frisk & Maha Khademi & Roman Khymyn & Ahmad A. Awad & Q. Tuan Le & Hamid Mazraati & Majid Mohseni & Markus Weigand & Iuliia Bykova & Felix Groß &, 2022. "Freezing and thawing magnetic droplet solitons," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    20. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45992-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.