IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29217-4.html
   My bibliography  Save this article

Electrical manipulation of skyrmions in a chiral magnet

Author

Listed:
  • Weiwei Wang

    (Anhui University
    Chinese Academy of Sciences)

  • Dongsheng Song

    (Anhui University)

  • Wensen Wei

    (Chinese Academy of Sciences)

  • Pengfei Nan

    (Anhui University)

  • Shilei Zhang

    (ShanghaiTech University)

  • Binghui Ge

    (Anhui University)

  • Mingliang Tian

    (Chinese Academy of Sciences
    University of Science and Technology of China
    Anhui University)

  • Jiadong Zang

    (University of New Hampshire
    University of New Hampshire
    University of Cologne)

  • Haifeng Du

    (Anhui University
    Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

Writing, erasing and computing are three fundamental operations required by any working electronic device. Magnetic skyrmions could be essential bits in promising in emerging topological spintronic devices. In particular, skyrmions in chiral magnets have outstanding properties like compact texture, uniform size, and high mobility. However, creating, deleting, and driving isolated skyrmions, as prototypes of aforementioned basic operations, have been a grand challenge in chiral magnets ever since the discovery of skyrmions, and achieving all these three operations in a single device is even more challenging. Here, by engineering chiral magnet Co8Zn10Mn2 into the customized micro-devices for in-situ Lorentz transmission electron microscopy observations, we implement these three operations of skyrmions using nanosecond current pulses with a low current density of about 1010 A·m−2 at room temperature. A notched structure can create or delete magnetic skyrmions depending on the direction and magnitude of current pulses. We further show that the magnetic skyrmions can be deterministically shifted step-by-step by current pulses, allowing the establishment of the universal current-velocity relationship. These experimental results have immediate significance towards the skyrmion-based memory or logic devices.

Suggested Citation

  • Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29217-4
    DOI: 10.1038/s41467-022-29217-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29217-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29217-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katharina Zeissler & Simone Finizio & Craig Barton & Alexandra J. Huxtable & Jamie Massey & Jörg Raabe & Alexandr V. Sadovnikov & Sergey A. Nikitov & Richard Brearton & Thorsten Hesjedal & Gerrit Laan, 2020. "Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. X. Z. Yu & W. Koshibae & Y. Tokunaga & K. Shibata & Y. Taguchi & N. Nagaosa & Y. Tokura, 2018. "Transformation between meron and skyrmion topological spin textures in a chiral magnet," Nature, Nature, vol. 564(7734), pages 95-98, December.
    3. Amalio Fernández-Pacheco & Robert Streubel & Olivier Fruchart & Riccardo Hertel & Peter Fischer & Russell P. Cowburn, 2017. "Three-dimensional nanomagnetism," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
    4. Seonghoon Woo & Kyung Mee Song & Hee-Sung Han & Min-Seung Jung & Mi-Young Im & Ki-Suk Lee & Kun Soo Song & Peter Fischer & Jung-Il Hong & Jun Woo Choi & Byoung-Chul Min & Hyun Cheol Koo & Joonyeon Cha, 2017. "Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    5. Y. Tokunaga & X. Z. Yu & J. S. White & H. M. Rønnow & D. Morikawa & Y. Taguchi & Y. Tokura, 2015. "A new class of chiral materials hosting magnetic skyrmions beyond room temperature," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    6. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    7. Junichi Iwasaki & Masahito Mochizuki & Naoto Nagaosa, 2013. "Universal current-velocity relation of skyrmion motion in chiral magnets," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongsen Zhang & Jin Tang & Yaodong Wu & Meng Shi & Xitong Xu & Shouguo Wang & Mingliang Tian & Haifeng Du, 2024. "Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yihao Wang & Zhihao Li & Xuan Luo & Jingjing Gao & Yuyan Han & Jialiang Jiang & Jin Tang & Huanxin Ju & Tongrui Li & Run Lv & Shengtao Cui & Yingguo Yang & Yuping Sun & Junfa Zhu & Xingyu Gao & Wenjia, 2024. "Dualistic insulator states in 1T-TaS2 crystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Dongsheng Song & Weiwei Wang & Shuisen Zhang & Yizhou Liu & Ning Wang & Fengshan Zheng & Mingliang Tian & Rafal E. Dunin-Borkowski & Jiadong Zang & Haifeng Du, 2024. "Steady motion of 80-nm-size skyrmions in a 100-nm-wide track," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Enyang Men & Deyang Li & Haiyang Zhang & Jingxin Chen & Zhihan Qiao & Long Wei & Zhaosheng Wang & Chuanying Xi & Dongsheng Song & Yuhan Li & Hyoungjeen Jeen & Kai Chen & Hong Zhu & Lin Hao, 2024. "An atomically controlled insulator-to-metal transition in iridate/manganite heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Yao Guang & Xichao Zhang & Yizhou Liu & Licong Peng & Fehmi Sami Yasin & Kosuke Karube & Daisuke Nakamura & Naoto Nagaosa & Yasujiro Taguchi & Masahito Mochizuki & Yoshinori Tokura & Xiuzhen Yu, 2024. "Confined antiskyrmion motion driven by electric current excitations," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Guang & Xichao Zhang & Yizhou Liu & Licong Peng & Fehmi Sami Yasin & Kosuke Karube & Daisuke Nakamura & Naoto Nagaosa & Yasujiro Taguchi & Masahito Mochizuki & Yoshinori Tokura & Xiuzhen Yu, 2024. "Confined antiskyrmion motion driven by electric current excitations," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Licong Peng & Kosuke Karube & Yasujiro Taguchi & Naoto Nagaosa & Yoshinori Tokura & Xiuzhen Yu, 2021. "Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    4. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Yu-Tsun Shao & Sujit Das & Zijian Hong & Ruijuan Xu & Swathi Chandrika & Fernando Gómez-Ortiz & Pablo García-Fernández & Long-Qing Chen & Harold Y. Hwang & Javier Junquera & Lane W. Martin & Ramamoort, 2023. "Emergent chirality in a polar meron to skyrmion phase transition," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    7. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Dongsheng Song & Weiwei Wang & Shuisen Zhang & Yizhou Liu & Ning Wang & Fengshan Zheng & Mingliang Tian & Rafal E. Dunin-Borkowski & Jiadong Zang & Haifeng Du, 2024. "Steady motion of 80-nm-size skyrmions in a 100-nm-wide track," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    17. Jidan Yang & Yu Zou & Wentao Tang & Jinxing Li & Mingjun Huang & Satoshi Aya, 2022. "Spontaneous electric-polarization topology in confined ferroelectric nematics," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. C. K. Safeer & Mohamed-Ali Nsibi & Jayshankar Nath & Mihai Sebastian Gabor & Haozhe Yang & Isabelle Joumard & Stephane Auffret & Gilles Gaudin & Ioan-Mihai Miron, 2022. "Effect of Chiral Damping on the dynamics of chiral domain walls and skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Fehmi Sami Yasin & Jan Masell & Kosuke Karube & Daisuke Shindo & Yasujiro Taguchi & Yoshinori Tokura & Xiuzhen Yu, 2023. "Heat current-driven topological spin texture transformations and helical q-vector switching," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29217-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.