IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47730-6.html
   My bibliography  Save this article

Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet

Author

Listed:
  • Yongsen Zhang

    (Science Island Branch, Graduate School of USTC
    Chinese Academy of Sciences)

  • Jin Tang

    (Anhui University)

  • Yaodong Wu

    (Hefei Normal University)

  • Meng Shi

    (Science Island Branch, Graduate School of USTC
    Chinese Academy of Sciences)

  • Xitong Xu

    (Chinese Academy of Sciences)

  • Shouguo Wang

    (Anhui University)

  • Mingliang Tian

    (Chinese Academy of Sciences
    Anhui University)

  • Haifeng Du

    (Chinese Academy of Sciences)

Abstract

Topological spin textures are characterized by magnetic topological charges, Q, which govern their electromagnetic properties. Recent studies have achieved skyrmion bundles with arbitrary integer values of Q, opening possibilities for exploring topological spintronics based on Q. However, the realization of stable skyrmion bundles in chiral magnets at room temperature and zero magnetic field — the prerequisite for realistic device applications — has remained elusive. Here, through the combination of pulsed currents and reversed magnetic fields, we experimentally achieve skyrmion bundles with different integer Q values — reaching a maximum of 24 at above room temperature and zero magnetic field — in the chiral magnet Co8Zn10Mn2. We demonstrate the field-driven annihilation of high-Q bundles and present a phase diagram as a function of temperature and field. Our experimental findings are consistently corroborated by micromagnetic simulations, which reveal the nature of the skyrmion bundle as that of skyrmion tubes encircled by a fractional Hopfion.

Suggested Citation

  • Yongsen Zhang & Jin Tang & Yaodong Wu & Meng Shi & Xitong Xu & Shouguo Wang & Mingliang Tian & Haifeng Du, 2024. "Stable skyrmion bundles at room temperature and zero magnetic field in a chiral magnet," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47730-6
    DOI: 10.1038/s41467-024-47730-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47730-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47730-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    2. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Wataru Koshibae & Naoto Nagaosa, 2014. "Creation of skyrmions and antiskyrmions by local heating," Nature Communications, Nature, vol. 5(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Fehmi Sami Yasin & Jan Masell & Kosuke Karube & Daisuke Shindo & Yasujiro Taguchi & Yoshinori Tokura & Xiuzhen Yu, 2023. "Heat current-driven topological spin texture transformations and helical q-vector switching," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Pyeongjae Park & Woonghee Cho & Chaebin Kim & Yeochan An & Yoon-Gu Kang & Maxim Avdeev & Romain Sibille & Kazuki Iida & Ryoichi Kajimoto & Ki Hoon Lee & Woori Ju & En-Jin Cho & Han-Jin Noh & Myung Joo, 2023. "Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Xiaowei Lv & Hualiang Lv & Yalei Huang & Ruixuan Zhang & Guanhua Qin & Yihui Dong & Min Liu & Ke Pei & Guixin Cao & Jincang Zhang & Yuxiang Lai & Renchao Che, 2024. "Distinct skyrmion phases at room temperature in two-dimensional ferromagnet Fe3GaTe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yuan Yao & Bei Ding & Jinjing Liang & Hang Li & Xi Shen & Richeng Yu & Wenhong Wang, 2022. "Chirality flips of skyrmion bubbles," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Hao Zhang & Zhentao Wang & David Dahlbom & Kipton Barros & Cristian D. Batista, 2023. "CP2 skyrmions and skyrmion crystals in realistic quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    12. Mengfan Guo & Erxiang Xu & Houbing Huang & Changqing Guo & Hetian Chen & Shulin Chen & Shan He & Le Zhou & Jing Ma & Zhonghui Shen & Ben Xu & Di Yi & Peng Gao & Ce-Wen Nan & Neil. D. Mathur & Yang She, 2024. "Electrically and mechanically driven rotation of polar spirals in a relaxor ferroelectric polymer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Claas Abert, 2019. "Micromagnetics and spintronics: models and numerical methods," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 92(6), pages 1-45, June.
    14. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. M. T. Birch & L. Powalla & S. Wintz & O. Hovorka & K. Litzius & J. C. Loudon & L. A. Turnbull & V. Nehruji & K. Son & C. Bubeck & T. G. Rauch & M. Weigand & E. Goering & M. Burghard & G. Schütz, 2022. "History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Wang, Bao & Lu, Xiao-Hu & Jia, Xiao & Xiong, Hao, 2023. "Coherent stimulated amplification of the skyrmion breathing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    20. Yuan Shen & Ingo Dierking, 2022. "Electrically tunable collective motion of dissipative solitons in chiral nematic films," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47730-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.