IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-019-14232-9.html
   My bibliography  Save this article

Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers

Author

Listed:
  • Katharina Zeissler

    (University of Leeds
    National Physical Laboratory)

  • Simone Finizio

    (Paul Scherrer Institute)

  • Craig Barton

    (National Physical Laboratory)

  • Alexandra J. Huxtable

    (University of Leeds)

  • Jamie Massey

    (University of Leeds)

  • Jörg Raabe

    (Paul Scherrer Institute)

  • Alexandr V. Sadovnikov

    (Saratov State University)

  • Sergey A. Nikitov

    (Saratov State University
    Russian Academy of Sciences
    Moscow Institute of Physics and Technology)

  • Richard Brearton

    (University of Oxford
    Harwell Campus)

  • Thorsten Hesjedal

    (University of Oxford)

  • Gerrit Laan

    (Harwell Campus)

  • Mark C. Rosamond

    (University of Leeds)

  • Edmund H. Linfield

    (University of Leeds)

  • Gavin Burnell

    (University of Leeds)

  • Christopher H. Marrows

    (University of Leeds)

Abstract

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms−1, the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration.

Suggested Citation

  • Katharina Zeissler & Simone Finizio & Craig Barton & Alexandra J. Huxtable & Jamie Massey & Jörg Raabe & Alexandr V. Sadovnikov & Sergey A. Nikitov & Richard Brearton & Thorsten Hesjedal & Gerrit Laan, 2020. "Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14232-9
    DOI: 10.1038/s41467-019-14232-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-14232-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-14232-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    3. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-019-14232-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.