IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15573.html
   My bibliography  Save this article

Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

Author

Listed:
  • Seonghoon Woo

    (Center for Spintronics, Korea Institute of Science and Technology)

  • Kyung Mee Song

    (Center for Spintronics, Korea Institute of Science and Technology
    Sookmyung Women’s University)

  • Hee-Sung Han

    (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)

  • Min-Seung Jung

    (DGIST)

  • Mi-Young Im

    (Research Center for Emerging Materials
    Center for X-ray Optics, Lawrence Berkeley National Laboratory)

  • Ki-Suk Lee

    (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology)

  • Kun Soo Song

    (Center for Spintronics, Korea Institute of Science and Technology)

  • Peter Fischer

    (Lawrence Berkeley National Laboratory
    University of California)

  • Jung-Il Hong

    (DGIST
    Research Center for Emerging Materials)

  • Jun Woo Choi

    (Center for Spintronics, Korea Institute of Science and Technology
    Korea University of Science and Technology)

  • Byoung-Chul Min

    (Center for Spintronics, Korea Institute of Science and Technology
    Korea University of Science and Technology)

  • Hyun Cheol Koo

    (Center for Spintronics, Korea Institute of Science and Technology
    KU-KIST Graduate School of Converging Science and Technology, Korea University)

  • Joonyeon Chang

    (Center for Spintronics, Korea Institute of Science and Technology
    Korea University of Science and Technology)

Abstract

Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin–orbit torques, can be reliably tuned by changing the magnitude of spin–orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin–orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.

Suggested Citation

  • Seonghoon Woo & Kyung Mee Song & Hee-Sung Han & Min-Seung Jung & Mi-Young Im & Ki-Suk Lee & Kun Soo Song & Peter Fischer & Jung-Il Hong & Jun Woo Choi & Byoung-Chul Min & Hyun Cheol Koo & Joonyeon Cha, 2017. "Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15573
    DOI: 10.1038/ncomms15573
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15573
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Licong Peng & Kosuke Karube & Yasujiro Taguchi & Naoto Nagaosa & Yoshinori Tokura & Xiuzhen Yu, 2021. "Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. C. K. Safeer & Mohamed-Ali Nsibi & Jayshankar Nath & Mihai Sebastian Gabor & Haozhe Yang & Isabelle Joumard & Stephane Auffret & Gilles Gaudin & Ioan-Mihai Miron, 2022. "Effect of Chiral Damping on the dynamics of chiral domain walls and skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.