IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29131-9.html
   My bibliography  Save this article

Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound

Author

Listed:
  • Rina Takagi

    (University of Tokyo
    University of Tokyo
    PRESTO, Japan Science and Technology Agency (JST)
    RIKEN Center for Emergent Matter Science (CEMS))

  • Naofumi Matsuyama

    (University of Tokyo)

  • Victor Ukleev

    (Paul Scherrer Institute (PSI))

  • Le Yu

    (Paul Scherrer Institute (PSI)
    École Polytechnique Fédérale de Lausanne (EPFL)
    École Polytechnique Fédérale de Lausanne (EPFL))

  • Jonathan S. White

    (Paul Scherrer Institute (PSI))

  • Sonia Francoual

    (Deutsches Elektronen-Synchrotron DESY)

  • José R. L. Mardegan

    (Deutsches Elektronen-Synchrotron DESY)

  • Satoru Hayami

    (University of Tokyo
    PRESTO, Japan Science and Technology Agency (JST))

  • Hiraku Saito

    (University of Tokyo)

  • Koji Kaneko

    (Japan Atomic Energy Agency
    Japan Atomic Energy Agency)

  • Kazuki Ohishi

    (Comprehensive Research Organization for Science and Society (CROSS))

  • Yoshichika Ōnuki

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Taka-hisa Arima

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Yoshinori Tokura

    (University of Tokyo
    RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Taro Nakajima

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Shinichiro Seki

    (University of Tokyo
    University of Tokyo
    PRESTO, Japan Science and Technology Agency (JST)
    RIKEN Center for Emergent Matter Science (CEMS))

Abstract

Magnetic skyrmions are topologically stable swirling spin textures with particle-like character, and have been intensively studied as a candidate of high-density information bit. While magnetic skyrmions were originally discovered in noncentrosymmetric systems with Dzyaloshinskii-Moriya interaction, recently a nanometric skyrmion lattice has also been reported for centrosymmetric rare-earth compounds, such as Gd2PdSi3 and GdRu2Si2. For the latter systems, a distinct skyrmion formation mechanism mediated by itinerant electrons has been proposed, and the search of a simpler model system allowing for a better understanding of their intricate magnetic phase diagram is highly demanded. Here, we report the discovery of square and rhombic lattices of nanometric skyrmions in a centrosymmetric binary compound EuAl4, by performing small-angle neutron and resonant elastic X-ray scattering experiments. Unlike previously reported centrosymmetric skyrmion-hosting materials, EuAl4 shows multiple-step reorientation of the fundamental magnetic modulation vector as a function of magnetic field, probably reflecting a delicate balance of associated itinerant-electron-mediated interactions. The present results demonstrate that a variety of distinctive skyrmion orders can be derived even in a simple centrosymmetric binary compound, which highlights rare-earth intermetallic systems as a promising platform to realize/control the competition of multiple topological magnetic phases in a single material.

Suggested Citation

  • Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29131-9
    DOI: 10.1038/s41467-022-29131-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29131-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29131-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. O. Leonov & M. Mostovoy, 2015. "Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    2. Max Hirschberger & Taro Nakajima & Shang Gao & Licong Peng & Akiko Kikkawa & Takashi Kurumaji & Markus Kriener & Yuichi Yamasaki & Hajime Sagayama & Hironori Nakao & Kazuki Ohishi & Kazuhisa Kakurai &, 2019. "Skyrmion phase and competing magnetic orders on a breathing kagomé lattice," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. U. K. Rößler & A. N. Bogdanov & C. Pfleiderer, 2006. "Spontaneous skyrmion ground states in magnetic metals," Nature, Nature, vol. 442(7104), pages 797-801, August.
    4. Y. Tokunaga & X. Z. Yu & J. S. White & H. M. Rønnow & D. Morikawa & Y. Taguchi & Y. Tokura, 2015. "A new class of chiral materials hosting magnetic skyrmions beyond room temperature," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    6. Yuuki Yasui & Christopher J. Butler & Nguyen Duy Khanh & Satoru Hayami & Takuya Nomoto & Tetsuo Hanaguri & Yukitoshi Motome & Ryotaro Arita & Taka-hisa Arima & Yoshinori Tokura & Shinichiro Seki, 2020. "Imaging the coupling between itinerant electrons and localised moments in the centrosymmetric skyrmion magnet GdRu2Si2," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    7. Ajaya K. Nayak & Vivek Kumar & Tianping Ma & Peter Werner & Eckhard Pippel & Roshnee Sahoo & Franoise Damay & Ulrich K. Rößler & Claudia Felser & Stuart S. P. Parkin, 2017. "Magnetic antiskyrmions above room temperature in tetragonal Heusler materials," Nature, Nature, vol. 548(7669), pages 561-566, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yoshihiro D. Kato & Yoshihiro Okamura & Max Hirschberger & Yoshinori Tokura & Youtarou Takahashi, 2023. "Topological magneto-optical effect from skyrmion lattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Hao Zhang & Zhentao Wang & David Dahlbom & Kipton Barros & Cristian D. Batista, 2023. "CP2 skyrmions and skyrmion crystals in realistic quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Chenhui Zhang & Ze Jiang & Jiawei Jiang & Wa He & Junwei Zhang & Fanrui Hu & Shishun Zhao & Dongsheng Yang & Yakun Liu & Yong Peng & Hongxin Yang & Hyunsoo Yang, 2024. "Above-room-temperature chiral skyrmion lattice and Dzyaloshinskii–Moriya interaction in a van der Waals ferromagnet Fe3−xGaTe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Fehmi Sami Yasin & Jan Masell & Kosuke Karube & Daisuke Shindo & Yasujiro Taguchi & Yoshinori Tokura & Xiuzhen Yu, 2023. "Heat current-driven topological spin texture transformations and helical q-vector switching," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Hongrui Zhang & Yu-Tsun Shao & Xiang Chen & Binhua Zhang & Tianye Wang & Fanhao Meng & Kun Xu & Peter Meisenheimer & Xianzhe Chen & Xiaoxi Huang & Piush Behera & Sajid Husain & Tiancong Zhu & Hao Pan , 2024. "Spin disorder control of topological spin texture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yao Guang & Xichao Zhang & Yizhou Liu & Licong Peng & Fehmi Sami Yasin & Kosuke Karube & Daisuke Nakamura & Naoto Nagaosa & Yasujiro Taguchi & Masahito Mochizuki & Yoshinori Tokura & Xiuzhen Yu, 2024. "Confined antiskyrmion motion driven by electric current excitations," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Wang, Bao & Lu, Xiao-Hu & Jia, Xiao & Xiong, Hao, 2023. "Coherent stimulated amplification of the skyrmion breathing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    13. Mara Gutzeit & André Kubetzka & Soumyajyoti Haldar & Henning Pralow & Moritz A. Goerzen & Roland Wiesendanger & Stefan Heinze & Kirsten Bergmann, 2022. "Nano-scale collinear multi-Q states driven by higher-order interactions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Yoshihiro D. Kato & Yoshihiro Okamura & Max Hirschberger & Yoshinori Tokura & Youtarou Takahashi, 2023. "Topological magneto-optical effect from skyrmion lattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. M. T. Birch & D. Cortés-Ortuño & K. Litzius & S. Wintz & F. Schulz & M. Weigand & A. Štefančič & D. A. Mayoh & G. Balakrishnan & P. D. Hatton & G. Schütz, 2022. "Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Pyeongjae Park & Woonghee Cho & Chaebin Kim & Yeochan An & Yoon-Gu Kang & Maxim Avdeev & Romain Sibille & Kazuki Iida & Ryoichi Kajimoto & Ki Hoon Lee & Woori Ju & En-Jin Cho & Han-Jin Noh & Myung Joo, 2023. "Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29131-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.