IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40720-0.html
   My bibliography  Save this article

Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force

Author

Listed:
  • Takaaki Dohi

    (Institut für Physik, Johannes Gutenberg-Universität Mainz
    Tohoku University)

  • Markus Weißenhofer

    (Universität Konstanz
    Uppsala University
    Freie Universität Berlin)

  • Nico Kerber

    (Institut für Physik, Johannes Gutenberg-Universität Mainz
    Graduate School of Excellence Materials Science in Mainz)

  • Fabian Kammerbauer

    (Institut für Physik, Johannes Gutenberg-Universität Mainz)

  • Yuqing Ge

    (Institut für Physik, Johannes Gutenberg-Universität Mainz)

  • Klaus Raab

    (Institut für Physik, Johannes Gutenberg-Universität Mainz)

  • Jakub Zázvorka

    (Charles University)

  • Maria-Andromachi Syskaki

    (Institut für Physik, Johannes Gutenberg-Universität Mainz
    Singulus Technologies AG)

  • Aga Shahee

    (Institut für Physik, Johannes Gutenberg-Universität Mainz)

  • Moritz Ruhwedel

    (Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern)

  • Tobias Böttcher

    (Graduate School of Excellence Materials Science in Mainz
    Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern)

  • Philipp Pirro

    (Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern)

  • Gerhard Jakob

    (Institut für Physik, Johannes Gutenberg-Universität Mainz
    Graduate School of Excellence Materials Science in Mainz)

  • Ulrich Nowak

    (Universität Konstanz)

  • Mathias Kläui

    (Institut für Physik, Johannes Gutenberg-Universität Mainz
    Graduate School of Excellence Materials Science in Mainz)

Abstract

Magnetic skyrmions, topologically-stabilized spin textures that emerge in magnetic systems, have garnered considerable interest due to a variety of electromagnetic responses that are governed by the topology. The topology that creates a microscopic gyrotropic force also causes detrimental effects, such as the skyrmion Hall effect, which is a well-studied phenomenon highlighting the influence of topology on the deterministic dynamics and drift motion. Furthermore, the gyrotropic force is anticipated to have a substantial impact on stochastic diffusive motion; however, the predicted repercussions have yet to be demonstrated, even qualitatively. Here we demonstrate enhanced thermally-activated diffusive motion of skyrmions in a specifically designed synthetic antiferromagnet. Suppressing the effective gyrotropic force by tuning the angular momentum compensation leads to a more than 10 times enhanced diffusion coefficient compared to that of ferromagnetic skyrmions. Consequently, our findings not only demonstrate the gyro-force dependence of the diffusion coefficient but also enable ultimately energy-efficient unconventional stochastic computing.

Suggested Citation

  • Takaaki Dohi & Markus Weißenhofer & Nico Kerber & Fabian Kammerbauer & Yuqing Ge & Klaus Raab & Jakub Zázvorka & Maria-Andromachi Syskaki & Aga Shahee & Moritz Ruhwedel & Tobias Böttcher & Philipp Pir, 2023. "Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40720-0
    DOI: 10.1038/s41467-023-40720-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40720-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40720-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seonghoon Woo & Kyung Mee Song & Xichao Zhang & Yan Zhou & Motohiko Ezawa & Xiaoxi Liu & S. Finizio & J. Raabe & Nyun Jong Lee & Sang-Il Kim & Seung-Young Park & Younghak Kim & Jae-Young Kim & Dongjoo, 2018. "Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Xichao Zhang & Yan Zhou & Motohiko Ezawa, 2016. "Magnetic bilayer-skyrmions without skyrmion Hall effect," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    3. Anthony K. C. Tan & Pin Ho & James Lourembam & Lisen Huang & Hang Khume Tan & Cynthia J. O. Reichhardt & Charles Reichhardt & Anjan Soumyanarayanan, 2021. "Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Takaaki Dohi & Samik DuttaGupta & Shunsuke Fukami & Hideo Ohno, 2019. "Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    6. U. K. Rößler & A. N. Bogdanov & C. Pfleiderer, 2006. "Spontaneous skyrmion ground states in magnetic metals," Nature, Nature, vol. 442(7104), pages 797-801, August.
    7. X. Z. Yu & Y. Onose & N. Kanazawa & J. H. Park & J. H. Han & Y. Matsui & N. Nagaosa & Y. Tokura, 2010. "Real-space observation of a two-dimensional skyrmion crystal," Nature, Nature, vol. 465(7300), pages 901-904, June.
    8. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    9. Katharina Zeissler & Simone Finizio & Craig Barton & Alexandra J. Huxtable & Jamie Massey & Jörg Raabe & Alexandr V. Sadovnikov & Sergey A. Nikitov & Richard Brearton & Thorsten Hesjedal & Gerrit Laan, 2020. "Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongsheng Song & Weiwei Wang & Shuisen Zhang & Yizhou Liu & Ning Wang & Fengshan Zheng & Mingliang Tian & Rafal E. Dunin-Borkowski & Jiadong Zang & Haifeng Du, 2024. "Steady motion of 80-nm-size skyrmions in a 100-nm-wide track," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Amal Aldarawsheh & Imara Lima Fernandes & Sascha Brinker & Moritz Sallermann & Muayad Abusaa & Stefan Blügel & Samir Lounis, 2022. "Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. C. J. O. Reichhardt & C. Reichhardt, 2022. "Dynamic phases and reentrant Hall effect for vortices and skyrmions on periodic pinning arrays," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-16, August.
    5. Mona Bhukta & Takaaki Dohi & Venkata Krishna Bharadwaj & Ricardo Zarzuela & Maria-Andromachi Syskaki & Michael Foerster & Miguel Angel Niño & Jairo Sinova & Robert Frömter & Mathias Kläui, 2024. "Homochiral antiferromagnetic merons, antimerons and bimerons realized in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Roméo Juge & Naveen Sisodia & Joseba Urrestarazu Larrañaga & Qiang Zhang & Van Tuong Pham & Kumari Gaurav Rana & Brice Sarpi & Nicolas Mille & Stefan Stanescu & Rachid Belkhou & Mohamad-Assaad Mawass , 2022. "Skyrmions in synthetic antiferromagnets and their nucleation via electrical current and ultra-fast laser illumination," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Satoru Hayami & Tsuyoshi Okubo & Yukitoshi Motome, 2021. "Phase shift in skyrmion crystals," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    9. Klaus Raab & Maarten A. Brems & Grischa Beneke & Takaaki Dohi & Jan Rothörl & Fabian Kammerbauer & Johan H. Mentink & Mathias Kläui, 2022. "Brownian reservoir computing realized using geometrically confined skyrmion dynamics," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    10. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Ruyi Chen & Chong Chen & Lei Han & Peisen Liu & Rongxuan Su & Wenxuan Zhu & Yongjian Zhou & Feng Pan & Cheng Song, 2023. "Ordered creation and motion of skyrmions with surface acoustic wave," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Yiming Sun & Tao Lin & Na Lei & Xing Chen & Wang Kang & Zhiyuan Zhao & Dahai Wei & Chao Chen & Simin Pang & Linglong Hu & Liu Yang & Enxuan Dong & Li Zhao & Lei Liu & Zhe Yuan & Aladin Ullrich & Chris, 2023. "Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Yu-Jia Wang & Yan-Peng Feng & Yun-Long Tang & Yin-Lian Zhu & Yi Cao & Min-Jie Zou & Wan-Rong Geng & Xiu-Liang Ma, 2024. "Polar Bloch points in strained ferroelectric films," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Wang, Bao & Lu, Xiao-Hu & Jia, Xiao & Xiong, Hao, 2023. "Coherent stimulated amplification of the skyrmion breathing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    16. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Hikaru Takeda & Masataka Kawano & Kyo Tamura & Masatoshi Akazawa & Jian Yan & Takeshi Waki & Hiroyuki Nakamura & Kazuki Sato & Yasuo Narumi & Masayuki Hagiwara & Minoru Yamashita & Chisa Hotta, 2024. "Magnon thermal Hall effect via emergent SU(3) flux on the antiferromagnetic skyrmion lattice," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    18. Oleksii M. Volkov & Oleksandr V. Pylypovskyi & Fabrizio Porrati & Florian Kronast & Jose A. Fernandez-Roldan & Attila Kákay & Alexander Kuprava & Sven Barth & Filipp N. Rybakov & Olle Eriksson & Sebas, 2024. "Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Hanqing Zhao & Boris A. Malomed & Ivan I. Smalyukh, 2023. "Topological solitonic macromolecules," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Imara Lima Fernandes & Stefan Blügel & Samir Lounis, 2022. "Spin-orbit enabled all-electrical readout of chiral spin-textures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40720-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.