IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27073-2.html
   My bibliography  Save this article

Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet

Author

Listed:
  • Licong Peng

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Kosuke Karube

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Yasujiro Taguchi

    (RIKEN Center for Emergent Matter Science (CEMS))

  • Naoto Nagaosa

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo)

  • Yoshinori Tokura

    (RIKEN Center for Emergent Matter Science (CEMS)
    University of Tokyo
    University of Tokyo)

  • Xiuzhen Yu

    (RIKEN Center for Emergent Matter Science (CEMS))

Abstract

Driving and controlling single-skyrmion motion promises skyrmion-based spintronic applications. Recently progress has been made in moving skyrmionic bubbles in thin-film heterostructures and low-temperature chiral skyrmions in the FeGe helimagnet by electric current. Here, we report the motion tracking and control of a single skyrmion at room temperature in the chiral-lattice magnet Co9Zn9Mn2 using nanosecond current pulses. We have directly observed that the skyrmion Hall motion reverses its direction upon the reversal of skyrmion topological number using Lorentz transmission electron microscopy. Systematic measurements of the single-skyrmion trace as a function of electric current reveal a dynamic transition from the static pinned state to the linear flow motion via a creep event, in agreement with the theoretical prediction. We have clarified the role of skyrmion pinning and evaluated the intrinsic skyrmion Hall angle and the skyrmion velocity in the course of the dynamic transition. Our results pave a way to skyrmion applications in spintronic devices.

Suggested Citation

  • Licong Peng & Kosuke Karube & Yasujiro Taguchi & Naoto Nagaosa & Yoshinori Tokura & Xiuzhen Yu, 2021. "Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27073-2
    DOI: 10.1038/s41467-021-27073-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27073-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27073-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seonghoon Woo & Kyung Mee Song & Hee-Sung Han & Min-Seung Jung & Mi-Young Im & Ki-Suk Lee & Kun Soo Song & Peter Fischer & Jung-Il Hong & Jun Woo Choi & Byoung-Chul Min & Hyun Cheol Koo & Joonyeon Cha, 2017. "Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
    2. Y. Tokunaga & X. Z. Yu & J. S. White & H. M. Rønnow & D. Morikawa & Y. Taguchi & Y. Tokura, 2015. "A new class of chiral materials hosting magnetic skyrmions beyond room temperature," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    3. Junichi Iwasaki & Masahito Mochizuki & Naoto Nagaosa, 2013. "Universal current-velocity relation of skyrmion motion in chiral magnets," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. T. Birch & D. Cortés-Ortuño & K. Litzius & S. Wintz & F. Schulz & M. Weigand & A. Štefančič & D. A. Mayoh & G. Balakrishnan & P. D. Hatton & G. Schütz, 2022. "Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yao Guang & Xichao Zhang & Yizhou Liu & Licong Peng & Fehmi Sami Yasin & Kosuke Karube & Daisuke Nakamura & Naoto Nagaosa & Yasujiro Taguchi & Masahito Mochizuki & Yoshinori Tokura & Xiuzhen Yu, 2024. "Confined antiskyrmion motion driven by electric current excitations," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiwei Wang & Dongsheng Song & Wensen Wei & Pengfei Nan & Shilei Zhang & Binghui Ge & Mingliang Tian & Jiadong Zang & Haifeng Du, 2022. "Electrical manipulation of skyrmions in a chiral magnet," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Fumiya Sekiguchi & Kestutis Budzinauskas & Prashant Padmanabhan & Rolf B. Versteeg & Vladimir Tsurkan & István Kézsmárki & Francesco Foggetti & Sergey Artyukhin & Paul H. M. Loosdrecht, 2022. "Slowdown of photoexcited spin dynamics in the non-collinear spin-ordered phases in skyrmion host GaV4S8," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Deepak Singh & Yukako Fujishiro & Satoru Hayami & Samuel H. Moody & Takuya Nomoto & Priya R. Baral & Victor Ukleev & Robert Cubitt & Nina-Juliane Steinke & Dariusz J. Gawryluk & Ekaterina Pomjakushina, 2023. "Transition between distinct hybrid skyrmion textures through their hexagonal-to-square crystal transformation in a polar magnet," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. C. K. Safeer & Mohamed-Ali Nsibi & Jayshankar Nath & Mihai Sebastian Gabor & Haozhe Yang & Isabelle Joumard & Stephane Auffret & Gilles Gaudin & Ioan-Mihai Miron, 2022. "Effect of Chiral Damping on the dynamics of chiral domain walls and skyrmions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Anthony K. C. Tan & Pin Ho & James Lourembam & Lisen Huang & Hang Khume Tan & Cynthia J. O. Reichhardt & Charles Reichhardt & Anjan Soumyanarayanan, 2021. "Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Raphael Gruber & Jakub Zázvorka & Maarten A. Brems & Davi R. Rodrigues & Takaaki Dohi & Nico Kerber & Boris Seng & Mehran Vafaee & Karin Everschor-Sitte & Peter Virnau & Mathias Kläui, 2022. "Skyrmion pinning energetics in thin film systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Rina Takagi & Naofumi Matsuyama & Victor Ukleev & Le Yu & Jonathan S. White & Sonia Francoual & José R. L. Mardegan & Satoru Hayami & Hiraku Saito & Koji Kaneko & Kazuki Ohishi & Yoshichika Ōnuki & Ta, 2022. "Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Yao Guang & Xichao Zhang & Yizhou Liu & Licong Peng & Fehmi Sami Yasin & Kosuke Karube & Daisuke Nakamura & Naoto Nagaosa & Yasujiro Taguchi & Masahito Mochizuki & Yoshinori Tokura & Xiuzhen Yu, 2024. "Confined antiskyrmion motion driven by electric current excitations," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    9. Sheng Yang & Yuelei Zhao & Kai Wu & Zhiqin Chu & Xiaohong Xu & Xiaoguang Li & Johan Åkerman & Yan Zhou, 2023. "Reversible conversion between skyrmions and skyrmioniums," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Dongsheng Song & Weiwei Wang & Shuisen Zhang & Yizhou Liu & Ning Wang & Fengshan Zheng & Mingliang Tian & Rafal E. Dunin-Borkowski & Jiadong Zang & Haifeng Du, 2024. "Steady motion of 80-nm-size skyrmions in a 100-nm-wide track," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. M. T. Birch & D. Cortés-Ortuño & K. Litzius & S. Wintz & F. Schulz & M. Weigand & A. Štefančič & D. A. Mayoh & G. Balakrishnan & P. D. Hatton & G. Schütz, 2022. "Toggle-like current-induced Bloch point dynamics of 3D skyrmion strings in a room temperature nanowire," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Chenhui Zhang & Ze Jiang & Jiawei Jiang & Wa He & Junwei Zhang & Fanrui Hu & Shishun Zhao & Dongsheng Yang & Yakun Liu & Yong Peng & Hongxin Yang & Hyunsoo Yang, 2024. "Above-room-temperature chiral skyrmion lattice and Dzyaloshinskii–Moriya interaction in a van der Waals ferromagnet Fe3−xGaTe2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27073-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.