IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28805-8.html
   My bibliography  Save this article

Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution

Author

Listed:
  • Yinghao Li

    (Nanyang Technological University)

  • Chun-Kuo Peng

    (National Yang Ming Chiao Tung University)

  • Huimin Hu

    (Soochow University)

  • San-Yuan Chen

    (National Yang Ming Chiao Tung University)

  • Jin-Ho Choi

    (Soochow University)

  • Yan-Gu Lin

    (National Synchrotron Radiation Research Center)

  • Jong-Min Lee

    (Nanyang Technological University)

Abstract

Developing high-performance electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production, yet still challenging. Here, we report boron-modulated osmium (B-Os) aerogels with rich defects and ultra-fine diameter as a pH-universal HER electrocatalyst. The catalyst shows the small overpotentials of 12, 19, and 33 mV at a current density of 10 mA cm−2 in acidic, alkaline, and neutral electrolytes, respectively, as well as excellent stability, surpassing commercial Pt/C. Operando X-ray absorption spectroscopy shows that interventional interstitial B atoms can optimize the electron structure of B-Os aerogels and stabilize Os as active sites in an electron-deficient state under realistic working conditions, and simultaneously reveals the HER catalytic mechanisms of B-Os aerogels in pH-universal electrolytes. The density functional theory calculations also indicate introducing B atoms can tailor the electronic structure of Os, resulting in the reduced water dissociation energy and the improved adsorption/desorption behavior of hydrogen, which synergistically accelerate HER.

Suggested Citation

  • Yinghao Li & Chun-Kuo Peng & Huimin Hu & San-Yuan Chen & Jin-Ho Choi & Yan-Gu Lin & Jong-Min Lee, 2022. "Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28805-8
    DOI: 10.1038/s41467-022-28805-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28805-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28805-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang Jiang & Boyang Liu & Min Luo & Shoucong Ning & Ming Peng & Yang Zhao & Ying-Rui Lu & Ting-Shan Chan & Frank M. F. Groot & Yongwen Tan, 2019. "Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Mingchuan Luo & Zhonglong Zhao & Yelong Zhang & Yingjun Sun & Yi Xing & Fan Lv & Yong Yang & Xu Zhang & Sooyeon Hwang & Yingnan Qin & Jing-Yuan Ma & Fei Lin & Dong Su & Gang Lu & Shaojun Guo, 2019. "PdMo bimetallene for oxygen reduction catalysis," Nature, Nature, vol. 574(7776), pages 81-85, October.
    3. Zhen-Feng Huang & Jiajia Song & Yonghua Du & Shibo Xi & Shuo Dou & Jean Marie Vianney Nsanzimana & Cheng Wang & Zhichuan J. Xu & Xin Wang, 2019. "Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts," Nature Energy, Nature, vol. 4(4), pages 329-338, April.
    4. Yan Jiao & Yao Zheng & Kenneth Davey & Shi-Zhang Qiao, 2016. "Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene," Nature Energy, Nature, vol. 1(10), pages 1-9, October.
    5. Do Hyung Kweon & Mahmut Sait Okyay & Seok-Jin Kim & Jong-Pil Jeon & Hyuk-Jun Noh & Noejung Park & Javeed Mahmood & Jong-Beom Baek, 2020. "Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    6. Kai Ling Zhou & Zelin Wang & Chang Bao Han & Xiaoxing Ke & Changhao Wang & Yuhong Jin & Qianqian Zhang & Jingbing Liu & Hao Wang & Hui Yan, 2021. "Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Hui Li & Peng Wen & Dominique S. Itanze & Zachary D. Hood & Shiba Adhikari & Chang Lu & Xiao Ma & Chaochao Dun & Lin Jiang & David L. Carroll & Yejun Qiu & Scott M. Geyer, 2020. "Scalable neutral H2O2 electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    8. Xinzhe Li & Yiyun Fang & Jun Wang & Hanyan Fang & Shibo Xi & Xiaoxu Zhao & Danyun Xu & Haomin Xu & Wei Yu & Xiao Hai & Cheng Chen & Chuanhao Yao & Hua Bing Tao & Alexander G. R. Howe & Stephen J. Penn, 2021. "Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Ran Du & Jinying Wang & Ying Wang & René Hübner & Xuelin Fan & Irena Senkovska & Yue Hu & Stefan Kaskel & Alexander Eychmüller, 2020. "Unveiling reductant chemistry in fabricating noble metal aerogels for superior oxygen evolution and ethanol oxidation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    10. M. S. Dresselhaus & I. L. Thomas, 2001. "Alternative energy technologies," Nature, Nature, vol. 414(6861), pages 332-337, November.
    11. Qilun Wang & Cong-Qiao Xu & Wei Liu & Sung-Fu Hung & Hong Yang & Jiajian Gao & Weizheng Cai & Hao Ming Chen & Jun Li & Bin Liu, 2020. "Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyu Zhang & Jing Jin & Junmei Chen & Yingyan Fang & Xu Han & Jiayi Chen & Yaping Li & Yu Wang & Junfeng Liu & Lei Wang, 2022. "Pinpointing the axial ligand effect on platinum single-atom-catalyst towards efficient alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Kamran Dastafkan & Xiangjian Shen & Rosalie K. Hocking & Quentin Meyer & Chuan Zhao, 2023. "Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yiming Zhu & Malte Klingenhof & Chenlong Gao & Toshinari Koketsu & Gregor Weiser & Yecan Pi & Shangheng Liu & Lijun Sui & Jingrong Hou & Jiayi Li & Haomin Jiang & Limin Xu & Wei-Hsiang Huang & Chih-We, 2024. "Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Yiming Zhu & Jiaao Wang & Toshinari Koketsu & Matthias Kroschel & Jin-Ming Chen & Su-Yang Hsu & Graeme Henkelman & Zhiwei Hu & Peter Strasser & Jiwei Ma, 2022. "Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Panlong Zhai & Chen Wang & Yuanyuan Zhao & Yanxue Zhang & Junfeng Gao & Licheng Sun & Jungang Hou, 2023. "Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Xiaoqin Si & Rui Lu & Zhitong Zhao & Xiaofeng Yang & Feng Wang & Huifang Jiang & Xiaolin Luo & Aiqin Wang & Zhaochi Feng & Jie Xu & Fang Lu, 2022. "Catalytic production of low-carbon footprint sustainable natural gas," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    10. Lin He & Menggang Li & Longyu Qiu & Shuo Geng & Yequn Liu & Fenyang Tian & Mingchuan Luo & Hu Liu & Yongsheng Yu & Weiwei Yang & Shaojun Guo, 2024. "Single-atom Mo-tailored high-entropy-alloy ultrathin nanosheets with intrinsic tensile strain enhance electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Ruiling Zhang & Yaozhou Li & Xuan Zhou & Ao Yu & Qi Huang & Tingting Xu & Longtao Zhu & Ping Peng & Shuyan Song & Luis Echegoyen & Fang-Fang Li, 2023. "Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    13. Haoyin Zhong & Qi Zhang & Junchen Yu & Xin Zhang & Chao Wu & Hang An & Yifan Ma & Hao Wang & Jun Zhang & Yong-Wei Zhang & Caozheng Diao & Zhi Gen Yu & Shibo Xi & Xiaopeng Wang & Junmin Xue, 2023. "Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Jacqueline Noga & Gregor Wolbring, 2014. "The Oil and Gas Discourse from the Perspective of the Canadian and Albertan Governments, Non-Governmental Organizations and the Oil and Gas Industry," Energies, MDPI, vol. 7(1), pages 1-20, January.
    16. Li, Dandan & Ding, Lei & Zhao, Qiang & Yang, Feng & Zhang, Sihang, 2024. "Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting," Applied Energy, Elsevier, vol. 356(C).
    17. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Zhao, Meng-Jie & Li, Er-Mei & Deng, Ning & Hu, Yingjie & Li, Chao-Xiong & Li, Bing & Li, Fang & Guo, Zhen-Guo & He, Jian-Bo, 2022. "Indirect electrodeposition of a NiMo@Ni(OH)2MoOx composite catalyst for superior hydrogen production in acidic and alkaline electrolytes," Renewable Energy, Elsevier, vol. 191(C), pages 370-379.
    19. Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Rui Yao & Kaian Sun & Kaiyang Zhang & Yun Wu & Yujie Du & Qiang Zhao & Guang Liu & Chen Chen & Yuhan Sun & Jinping Li, 2024. "Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28805-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.