IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18064-w.html
   My bibliography  Save this article

Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting

Author

Listed:
  • Qilun Wang

    (Nanyang Technological University)

  • Cong-Qiao Xu

    (Southern University of Science and Technology)

  • Wei Liu

    (Chinese Academy of Sciences)

  • Sung-Fu Hung

    (National Taiwan University)

  • Hong Yang

    (Suzhou University of Science and Technology)

  • Jiajian Gao

    (Nanyang Technological University)

  • Weizheng Cai

    (Nanyang Technological University)

  • Hao Ming Chen

    (National Taiwan University)

  • Jun Li

    (Southern University of Science and Technology
    Tsinghua University)

  • Bin Liu

    (Nanyang Technological University)

Abstract

Water electrolysis offers a promising energy conversion and storage technology for mitigating the global energy and environmental crisis, but there still lack highly efficient and pH-universal electrocatalysts to boost the sluggish kinetics for both cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). Herein, we report uniformly dispersed iridium nanoclusters embedded on nitrogen and sulfur co-doped graphene as an efficient and robust electrocatalyst for both HER and OER at all pH conditions, reaching a current density of 10 mA cm−2 with only 300, 190 and 220 mV overpotential for overall water splitting in neutral, acidic and alkaline electrolyte, respectively. Based on probing experiments, operando X-ray absorption spectroscopy and theoretical calculations, we attribute the high catalytic activities to the optimum bindings to hydrogen (for HER) and oxygenated intermediate species (for OER) derived from the tunable and favorable electronic state of the iridium sites coordinated with both nitrogen and sulfur.

Suggested Citation

  • Qilun Wang & Cong-Qiao Xu & Wei Liu & Sung-Fu Hung & Hong Yang & Jiajian Gao & Weizheng Cai & Hao Ming Chen & Jun Li & Bin Liu, 2020. "Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18064-w
    DOI: 10.1038/s41467-020-18064-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18064-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18064-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinghao Li & Chun-Kuo Peng & Huimin Hu & San-Yuan Chen & Jin-Ho Choi & Yan-Gu Lin & Jong-Min Lee, 2022. "Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Chun-Kuo Peng & Yu-Chang Lin & Chao‐Lung Chiang & Zhengxin Qian & Yu-Cheng Huang & Chung-Li Dong & Jian‐Feng Li & Chien-Te Chen & Zhiwei Hu & San-Yuan Chen & Yan-Gu Lin, 2023. "Zhang-Rice singlets state formed by two-step oxidation for triggering water oxidation under operando conditions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Linjie Zhang & Haihui Hu & Chen Sun & Dongdong Xiao & Hsiao-Tsu Wang & Yi Xiao & Shuwen Zhao & Kuan Hung Chen & Wei-Xuan Lin & Yu-Cheng Shao & Xiuyun Wang & Chih-Wen Pao & Lili Han, 2024. "Bimetallic nanoalloys planted on super-hydrophilic carbon nanocages featuring tip-intensified hydrogen evolution electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Xiaowen Chen & Xuetao Qin & Yueyue Jiao & Mi Peng & Jiangyong Diao & Pengju Ren & Chengyu Li & Dequan Xiao & Xiaodong Wen & Zheng Jiang & Ning Wang & Xiangbin Cai & Hongyang Liu & Ding Ma, 2023. "Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18064-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.