IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27333-1.html
   My bibliography  Save this article

Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive

Author

Listed:
  • Stephanie Gamez

    (University of California, San Diego
    Agragene Inc.)

  • Duverney Chaverra-Rodriguez

    (University of California, San Diego)

  • Anna Buchman

    (University of California, San Diego
    Verily Life Sciences)

  • Nikolay P. Kandul

    (University of California, San Diego)

  • Stelia C. Mendez-Sanchez

    (University of California, San Diego
    School of Chemistry, Universidad Industrial de Santander)

  • Jared B. Bennett

    (Biophysics Graduate Group, University of California
    School of Public Health, University of California)

  • Héctor M. Sánchez C.

    (School of Public Health, University of California)

  • Ting Yang

    (University of California, San Diego)

  • Igor Antoshechkin

    (California Institute of Technology)

  • Jonny E. Duque

    (University of California, San Diego
    Universidad Industrial de Santander, Piedecuesta)

  • Philippos A. Papathanos

    (Food and Environment, Hebrew University of Jerusalem)

  • John M. Marshall

    (School of Public Health, University of California
    University of California)

  • Omar S. Akbari

    (University of California, San Diego)

Abstract

CRISPR-based genetic engineering tools aimed to bias sex ratios, or drive effector genes into animal populations, often integrate the transgenes into autosomal chromosomes. However, in species with heterogametic sex chromsomes (e.g. XY, ZW), sex linkage of endonucleases could be beneficial to drive the expression in a sex-specific manner to produce genetic sexing systems, sex ratio distorters, or even sex-specific gene drives, for example. To explore this possibility, here we develop a transgenic line of Drosophila melanogaster expressing Cas9 from the Y chromosome. We functionally characterize the utility of this strain for both sex selection and gene drive finding it to be quite effective. To explore its utility for population control, we built mathematical models illustrating its dynamics as compared to other state-of-the-art systems designed for both population modification and suppression. Taken together, our results contribute to the development of current CRISPR genetic control tools and demonstrate the utility of using sex-linked Cas9 strains for genetic control of animals.

Suggested Citation

  • Stephanie Gamez & Duverney Chaverra-Rodriguez & Anna Buchman & Nikolay P. Kandul & Stelia C. Mendez-Sanchez & Jared B. Bennett & Héctor M. Sánchez C. & Ting Yang & Igor Antoshechkin & Jonny E. Duque &, 2021. "Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27333-1
    DOI: 10.1038/s41467-021-27333-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27333-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27333-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guan-Hong Wang & Stephanie Gamez & Robyn R. Raban & John M. Marshall & Luke Alphey & Ming Li & Jason L. Rasgon & Omar S. Akbari, 2021. "Combating mosquito-borne diseases using genetic control technologies," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Nikolay P. Kandul & Junru Liu & Alexander D. Hsu & Bruce A. Hay & Omar S. Akbari, 2020. "A drug-inducible sex-separation technique for insects," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Ming Li & Ting Yang & Michelle Bui & Stephanie Gamez & Tyler Wise & Nikolay P. Kandul & Junru Liu & Lenissa Alcantara & Haena Lee & Jyotheeswara R. Edula & Robyn Raban & Yinpeng Zhan & Yijin Wang & Ni, 2021. "Suppressing mosquito populations with precision guided sterile males," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Nikolay P. Kandul & Junru Liu & Hector M. Sanchez C. & Sean L. Wu & John M. Marshall & Omar S. Akbari, 2019. "Transforming insect population control with precision guided sterile males with demonstration in flies," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    5. Roberto Galizi & Lindsey A. Doyle & Miriam Menichelli & Federica Bernardini & Anne Deredec & Austin Burt & Barry L. Stoddard & Nikolai Windbichler & Andrea Crisanti, 2014. "A synthetic sex ratio distortion system for the control of the human malaria mosquito," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Sanz Juste & Emily M. Okamoto & Christina Nguyen & Xuechun Feng & Víctor López Del Amo, 2023. "Next-generation CRISPR gene-drive systems using Cas12a nuclease," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Angela Meccariello & Shibo Hou & Serafima Davydova & James Daniel Fawcett & Alexandra Siddall & Philip T. Leftwich & Flavia Krsticevic & Philippos Aris Papathanos & Nikolai Windbichler, 2024. "Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Silvia Grilli & Roberto Galizi & Chrysanthi Taxiarchi, 2021. "Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    5. Beaghton, P.J. & Burt, Austin, 2022. "Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density," Theoretical Population Biology, Elsevier, vol. 145(C), pages 109-125.
    6. Jie Du & Weizhe Chen & Xihua Jia & Xuejiao Xu & Emily Yang & Ruizhi Zhou & Yuqi Zhang & Matt Metzloff & Philipp W. Messer & Jackson Champer, 2024. "Germline Cas9 promoters with improved performance for homing gene drive," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Tim Harvey-Samuel & Xuechun Feng & Emily M. Okamoto & Deepak-Kumar Purusothaman & Philip T. Leftwich & Luke Alphey & Valentino M. Gantz, 2023. "CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Michelle L. Johnson & Bruce A. Hay & Maciej Maselko, 2024. "Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele Sails," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Beaghton, Andrea & Beaghton, Pantelis John & Burt, Austin, 2016. "Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter," Theoretical Population Biology, Elsevier, vol. 108(C), pages 51-69.
    10. Weizhe Chen & Jialiang Guo & Yiran Liu & Jackson Champer, 2024. "Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Franck Adama Yao & Abdoul-Azize Millogo & Patric Stephane Epopa & Ace North & Florian Noulin & Koulmaga Dao & Mouhamed Drabo & Charles Guissou & Souleymane Kekele & Moussa Namountougou & Robert Kossiv, 2022. "Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Rocco D’Amato & Chrysanthi Taxiarchi & Marco Galardini & Alessandro Trusso & Roxana L. Minuz & Silvia Grilli & Alastair G. T. Somerville & Dammy Shittu & Ahmad S. Khalil & Roberto Galizi & Andrea Cris, 2024. "Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Xiaomei Sun & Xueli Wang & Kai Shi & Xiangyang Lyu & Jian Sun & Alexander S. Raikhel & Zhen Zou, 2024. "Leucine aminopeptidase1 controls egg deposition and hatchability in male Aedes aegypti mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Daniella An Haber & Yael Arien & Lee Benjamin Lamdan & Yehonathan Alcalay & Chen Zecharia & Flavia Krsticevic & Elad Shmuel Yonah & Rotem Daniel Avraham & Elzbieta Krzywinska & Jaroslaw Krzywinski & E, 2024. "Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27333-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.