IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55391-8.html
   My bibliography  Save this article

A Y chromosome-linked genome editor for efficient population suppression in the malaria vector Anopheles gambiae

Author

Listed:
  • Ignacio Tolosana

    (Imperial College London)

  • Katie Willis

    (Imperial College London)

  • Matthew Gribble

    (Imperial College London)

  • Lee Phillimore

    (Imperial College London)

  • Austin Burt

    (Imperial College London)

  • Tony Nolan

    (Liverpool School of Tropical Medicine)

  • Andrea Crisanti

    (Imperial College London)

  • Federica Bernardini

    (Imperial College London)

Abstract

Genetic control – the deliberate introduction of genetic traits to control a pest or vector population – offers a powerful tool to augment conventional mosquito control tools that have been successful in reducing malaria burden but that are compromised by a range of operational challenges. Self-sustaining genetic control strategies have shown great potential in laboratory settings, but hesitancy due to their invasive and persistent nature may delay their implementation. Here, instead, we describe a self-limiting strategy, designed to have geographically and temporally restricted effect, based on a Y chromosome-linked genome editor (YLE). The YLE comprises a CRISPR-Cas9 construct that is always inherited by males yet generates an autosomal dominant mutation that is transmitted to over 90% of the offspring and results in female-specific sterility. To our knowledge, our system represents a pioneering approach in the engineering of the Y chromosome to generate a genetic control strain for mosquitoes. Mathematical modelling shows that this YLE technology is up to seven times more efficient for population suppression than optimal versions of other self-limiting strategies, such as the widely used Sterile Insect Technique or the Release of Insects carrying a Dominant Lethal gene.

Suggested Citation

  • Ignacio Tolosana & Katie Willis & Matthew Gribble & Lee Phillimore & Austin Burt & Tony Nolan & Andrea Crisanti & Federica Bernardini, 2025. "A Y chromosome-linked genome editor for efficient population suppression in the malaria vector Anopheles gambiae," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55391-8
    DOI: 10.1038/s41467-024-55391-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55391-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55391-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weizhe Chen & Jialiang Guo & Yiran Liu & Jackson Champer, 2024. "Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Ming Li & Ting Yang & Michelle Bui & Stephanie Gamez & Tyler Wise & Nikolay P. Kandul & Junru Liu & Lenissa Alcantara & Haena Lee & Jyotheeswara R. Edula & Robyn Raban & Yinpeng Zhan & Yijin Wang & Ni, 2021. "Suppressing mosquito populations with precision guided sterile males," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Nikolay P. Kandul & Junru Liu & Hector M. Sanchez C. & Sean L. Wu & John M. Marshall & Omar S. Akbari, 2019. "Transforming insect population control with precision guided sterile males with demonstration in flies," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Roberto Galizi & Lindsey A. Doyle & Miriam Menichelli & Federica Bernardini & Anne Deredec & Austin Burt & Barry L. Stoddard & Nikolai Windbichler & Andrea Crisanti, 2014. "A synthetic sex ratio distortion system for the control of the human malaria mosquito," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephanie Gamez & Duverney Chaverra-Rodriguez & Anna Buchman & Nikolay P. Kandul & Stelia C. Mendez-Sanchez & Jared B. Bennett & Héctor M. Sánchez C. & Ting Yang & Igor Antoshechkin & Jonny E. Duque &, 2021. "Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Sara Sanz Juste & Emily M. Okamoto & Christina Nguyen & Xuechun Feng & Víctor López Del Amo, 2023. "Next-generation CRISPR gene-drive systems using Cas12a nuclease," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Angela Meccariello & Shibo Hou & Serafima Davydova & James Daniel Fawcett & Alexandra Siddall & Philip T. Leftwich & Flavia Krsticevic & Philippos Aris Papathanos & Nikolai Windbichler, 2024. "Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Silvia Grilli & Roberto Galizi & Chrysanthi Taxiarchi, 2021. "Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    6. Beaghton, P.J. & Burt, Austin, 2022. "Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density," Theoretical Population Biology, Elsevier, vol. 145(C), pages 109-125.
    7. Jie Du & Weizhe Chen & Xihua Jia & Xuejiao Xu & Emily Yang & Ruizhi Zhou & Yuqi Zhang & Matt Metzloff & Philipp W. Messer & Jackson Champer, 2024. "Germline Cas9 promoters with improved performance for homing gene drive," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Tim Harvey-Samuel & Xuechun Feng & Emily M. Okamoto & Deepak-Kumar Purusothaman & Philip T. Leftwich & Luke Alphey & Valentino M. Gantz, 2023. "CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Michelle L. Johnson & Bruce A. Hay & Maciej Maselko, 2024. "Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele Sails," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Samuel J. Beach & Maciej Maselko, 2025. "Recombinant venom proteins in insect seminal fluid reduce female lifespan," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    11. Beaghton, Andrea & Beaghton, Pantelis John & Burt, Austin, 2016. "Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter," Theoretical Population Biology, Elsevier, vol. 108(C), pages 51-69.
    12. Weizhe Chen & Jialiang Guo & Yiran Liu & Jackson Champer, 2024. "Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Franck Adama Yao & Abdoul-Azize Millogo & Patric Stephane Epopa & Ace North & Florian Noulin & Koulmaga Dao & Mouhamed Drabo & Charles Guissou & Souleymane Kekele & Moussa Namountougou & Robert Kossiv, 2022. "Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Rocco D’Amato & Chrysanthi Taxiarchi & Marco Galardini & Alessandro Trusso & Roxana L. Minuz & Silvia Grilli & Alastair G. T. Somerville & Dammy Shittu & Ahmad S. Khalil & Roberto Galizi & Andrea Cris, 2024. "Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Xiaomei Sun & Xueli Wang & Kai Shi & Xiangyang Lyu & Jian Sun & Alexander S. Raikhel & Zhen Zou, 2024. "Leucine aminopeptidase1 controls egg deposition and hatchability in male Aedes aegypti mosquitoes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Daniella An Haber & Yael Arien & Lee Benjamin Lamdan & Yehonathan Alcalay & Chen Zecharia & Flavia Krsticevic & Elad Shmuel Yonah & Rotem Daniel Avraham & Elzbieta Krzywinska & Jaroslaw Krzywinski & E, 2024. "Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55391-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.