IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44399-1.html
   My bibliography  Save this article

Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata

Author

Listed:
  • Angela Meccariello

    (Imperial College London)

  • Shibo Hou

    (Imperial College London)

  • Serafima Davydova

    (Imperial College London)

  • James Daniel Fawcett

    (Imperial College London)

  • Alexandra Siddall

    (University of East Anglia, Norwich Research Park)

  • Philip T. Leftwich

    (University of East Anglia, Norwich Research Park)

  • Flavia Krsticevic

    (Hebrew University of Jerusalem)

  • Philippos Aris Papathanos

    (Hebrew University of Jerusalem)

  • Nikolai Windbichler

    (Imperial College London)

Abstract

Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.

Suggested Citation

  • Angela Meccariello & Shibo Hou & Serafima Davydova & James Daniel Fawcett & Alexandra Siddall & Philip T. Leftwich & Flavia Krsticevic & Philippos Aris Papathanos & Nikolai Windbichler, 2024. "Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44399-1
    DOI: 10.1038/s41467-023-44399-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44399-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44399-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hannah A. Grunwald & Valentino M. Gantz & Gunnar Poplawski & Xiang-Ru S. Xu & Ethan Bier & Kimberly L. Cooper, 2019. "Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline," Nature, Nature, vol. 566(7742), pages 105-109, February.
    2. Nikolay P. Kandul & Junru Liu & Hector M. Sanchez C. & Sean L. Wu & John M. Marshall & Omar S. Akbari, 2019. "Transforming insect population control with precision guided sterile males with demonstration in flies," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    3. Roberto Galizi & Lindsey A. Doyle & Miriam Menichelli & Federica Bernardini & Anne Deredec & Austin Burt & Barry L. Stoddard & Nikolai Windbichler & Andrea Crisanti, 2014. "A synthetic sex ratio distortion system for the control of the human malaria mosquito," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michelle L. Johnson & Bruce A. Hay & Maciej Maselko, 2024. "Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele Sails," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebald A. N. Verkuijl & Estela Gonzalez & Ming Li & Joshua X. D. Ang & Nikolay P. Kandul & Michelle A. E. Anderson & Omar S. Akbari & Michael B. Bonsall & Luke Alphey, 2022. "A CRISPR endonuclease gene drive reveals distinct mechanisms of inheritance bias," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Stephanie Gamez & Duverney Chaverra-Rodriguez & Anna Buchman & Nikolay P. Kandul & Stelia C. Mendez-Sanchez & Jared B. Bennett & Héctor M. Sánchez C. & Ting Yang & Igor Antoshechkin & Jonny E. Duque &, 2021. "Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Sara Sanz Juste & Emily M. Okamoto & Christina Nguyen & Xuechun Feng & Víctor López Del Amo, 2023. "Next-generation CRISPR gene-drive systems using Cas12a nuclease," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Silvia Grilli & Roberto Galizi & Chrysanthi Taxiarchi, 2021. "Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors," Sustainability, MDPI, vol. 13(10), pages 1-19, May.
    5. Beaghton, P.J. & Burt, Austin, 2022. "Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density," Theoretical Population Biology, Elsevier, vol. 145(C), pages 109-125.
    6. Jie Du & Weizhe Chen & Xihua Jia & Xuejiao Xu & Emily Yang & Ruizhi Zhou & Yuqi Zhang & Matt Metzloff & Philipp W. Messer & Jackson Champer, 2024. "Germline Cas9 promoters with improved performance for homing gene drive," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Alena L. Bishop & Víctor López Del Amo & Emily M. Okamoto & Zsolt Bodai & Alexis C. Komor & Valentino M. Gantz, 2022. "Double-tap gene drive uses iterative genome targeting to help overcome resistance alleles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Alejo Menchaca, 2021. "Sustainable Food Production: The Contribution of Genome Editing in Livestock," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    9. Tim Harvey-Samuel & Xuechun Feng & Emily M. Okamoto & Deepak-Kumar Purusothaman & Philip T. Leftwich & Luke Alphey & Valentino M. Gantz, 2023. "CRISPR-based gene drives generate super-Mendelian inheritance in the disease vector Culex quinquefasciatus," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Michelle L. Johnson & Bruce A. Hay & Maciej Maselko, 2024. "Altering traits and fates of wild populations with Mendelian DNA sequence modifying Allele Sails," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    11. Beaghton, Andrea & Beaghton, Pantelis John & Burt, Austin, 2016. "Gene drive through a landscape: Reaction–diffusion models of population suppression and elimination by a sex ratio distorter," Theoretical Population Biology, Elsevier, vol. 108(C), pages 51-69.
    12. Michelle A. E. Anderson & Estela Gonzalez & Matthew P. Edgington & Joshua X. D. Ang & Deepak-Kumar Purusothaman & Lewis Shackleford & Katherine Nevard & Sebald A. N. Verkuijl & Timothy Harvey-Samuel &, 2024. "A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Charlotte Douglas & Valdone Maciulyte & Jasmin Zohren & Daniel M. Snell & Shantha K. Mahadevaiah & Obah A. Ojarikre & Peter J. I. Ellis & James M. A. Turner, 2021. "CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Franck Adama Yao & Abdoul-Azize Millogo & Patric Stephane Epopa & Ace North & Florian Noulin & Koulmaga Dao & Mouhamed Drabo & Charles Guissou & Souleymane Kekele & Moussa Namountougou & Robert Kossiv, 2022. "Mark-release-recapture experiment in Burkina Faso demonstrates reduced fitness and dispersal of genetically-modified sterile malaria mosquitoes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Rocco D’Amato & Chrysanthi Taxiarchi & Marco Galardini & Alessandro Trusso & Roxana L. Minuz & Silvia Grilli & Alastair G. T. Somerville & Dammy Shittu & Ahmad S. Khalil & Roberto Galizi & Andrea Cris, 2024. "Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Daniella An Haber & Yael Arien & Lee Benjamin Lamdan & Yehonathan Alcalay & Chen Zecharia & Flavia Krsticevic & Elad Shmuel Yonah & Rotem Daniel Avraham & Elzbieta Krzywinska & Jaroslaw Krzywinski & E, 2024. "Targeting mosquito X-chromosomes reveals complex transmission dynamics of sex ratio distorting gene drives," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44399-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.