IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26177-z.html
   My bibliography  Save this article

PDZD-8 and TEX-2 regulate endosomal PI(4,5)P2 homeostasis via lipid transport to promote embryogenesis in C. elegans

Author

Listed:
  • Darshini Jeyasimman

    (Lee Kong Chian School of Medicine, Nanyang Technological University)

  • Bilge Ercan

    (Lee Kong Chian School of Medicine, Nanyang Technological University)

  • Dennis Dharmawan

    (Lee Kong Chian School of Medicine, Nanyang Technological University)

  • Tomoki Naito

    (Lee Kong Chian School of Medicine, Nanyang Technological University)

  • Jingbo Sun

    (Lee Kong Chian School of Medicine, Nanyang Technological University)

  • Yasunori Saheki

    (Lee Kong Chian School of Medicine, Nanyang Technological University
    Kumamoto University)

Abstract

Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.

Suggested Citation

  • Darshini Jeyasimman & Bilge Ercan & Dennis Dharmawan & Tomoki Naito & Jingbo Sun & Yasunori Saheki, 2021. "PDZD-8 and TEX-2 regulate endosomal PI(4,5)P2 homeostasis via lipid transport to promote embryogenesis in C. elegans," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26177-z
    DOI: 10.1038/s41467-021-26177-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26177-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26177-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gilbert Di Paolo & Pietro De Camilli, 2006. "Phosphoinositides in cell regulation and membrane dynamics," Nature, Nature, vol. 443(7112), pages 651-657, October.
    2. Joachim Moser von Filseck & Stefano Vanni & Bruno Mesmin & Bruno Antonny & Guillaume Drin, 2015. "A phosphatidylinositol-4-phosphate powered exchange mechanism to create a lipid gradient between membranes," Nature Communications, Nature, vol. 6(1), pages 1-12, May.
    3. Michiko Shirane & Mariko Wada & Keiko Morita & Nahoki Hayashi & Reina Kunimatsu & Yuki Matsumoto & Fumiko Matsuzaki & Hirokazu Nakatsumi & Keisuke Ohta & Yasushi Tamura & Keiichi I. Nakayama, 2020. "Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
    4. Yael Elbaz-Alon & Yuting Guo & Nadav Segev & Michal Harel & Daniel E. Quinnell & Tamar Geiger & Ori Avinoam & Dong Li & Jodi Nunnari, 2020. "PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    5. Curtis M. Schauder & Xudong Wu & Yasunori Saheki & Pradeep Narayanaswamy & Federico Torta & Markus R. Wenk & Pietro De Camilli & Karin M. Reinisch, 2014. "Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer," Nature, Nature, vol. 510(7506), pages 552-555, June.
    6. ., 2017. "Western extended economic development," Chapters, in: A General Theory of Economic Development, chapter 4, pages 63-73, Edward Elgar Publishing.
    7. Jiangqing Dong & Ximing Du & Huan Wang & Jue Wang & Chang Lu & Xiang Chen & Zhiwen Zhu & Zhipu Luo & Li Yu & Andrew J. Brown & Hongyuan Yang & Jia-Wei Wu, 2019. "Allosteric enhancement of ORP1-mediated cholesterol transport by PI(4,5)P2/PI(3,4)P2," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    8. Laura L. E. Cowen & Panagiotis Besbeas & Byron J. T. Morgan & Carl J. Schwarz, 2017. "Hidden Markov models for extended batch data," Biometrics, The International Biometric Society, vol. 73(4), pages 1321-1331, December.
    9. Joost C.M. Holthuis & Anant K. Menon, 2014. "Lipid landscapes and pipelines in membrane homeostasis," Nature, Nature, vol. 510(7503), pages 48-57, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunyun Wang & Zhenni Li & Xinyu Wang & Ziyuan Zhao & Li Jiao & Ruming Liu & Keying Wang & Rui Ma & Yang Yang & Guo Chen & Yong Wang & Xin Bian, 2023. "Insights into membrane association of the SMP domain of extended synaptotagmin," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Diede Haan & Lior Aram & Hadas Peled-Zehavi & Yoseph Addadi & Oz Ben-Joseph & Ron Rotkopf & Nadav Elad & Katya Rechav & Assaf Gal, 2023. "Exocytosis of the silicified cell wall of diatoms involves extensive membrane disintegration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Yue Huang & Ruipeng Mu & David Wen & Joseph S Grimsby & Meina Liang & Anton I Rosenbaum, 2021. "Differences in levels of phosphatidylinositols in healthy and stable Coronary Artery Disease subjects revealed by HILIC-MRM method with SERRF normalization," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    4. Antonio L Egea-Jiménez & Ángel Pérez-Lara & Senena Corbalán-García & Juan C Gómez-Fernández, 2013. "Phosphatidylinositol 4,5-Bisphosphate Decreases the Concentration of Ca2+, Phosphatidylserine and Diacylglycerol Required for Protein Kinase C α to Reach Maximum Activity," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    5. Ying Huang & Chenyang Xue & Ruiqian Bu & Cang Wu & Jiachen Li & Jinqiu Zhang & Jinyu Chen & Zhaoying Shi & Yonglong Chen & Yong Wang & Zhongmin Liu, 2024. "Inhibition and transport mechanisms of the ABC transporter hMRP5," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Yannick Weyer & Sinead I. Schwabl & Xuechen Tang & Astha Purwar & Konstantin Siegmann & Angela Ruepp & Theresia Dunzendorfer-Matt & Michael A. Widerin & Veronika Niedrist & Noa J. M. Mutsters & Maria , 2024. "The Dsc ubiquitin ligase complex identifies transmembrane degrons to degrade orphaned proteins at the Golgi," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Maria Thürmer & André Gollowitzer & Helmut Pein & Konstantin Neukirch & Elif Gelmez & Lorenz Waltl & Natalie Wielsch & René Winkler & Konstantin Löser & Julia Grander & Madlen Hotze & Sönke Harder & A, 2022. "PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Nilmani Singh & Adriana Reyes-Ordoñez & Michael A. Compagnone & Jesus F. Moreno & Benjamin J. Leslie & Taekjip Ha & Jie Chen, 2021. "Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Jan-Hannes Schäfer & Carolin Körner & Bianca M. Esch & Sergej Limar & Kristian Parey & Stefan Walter & Dovile Januliene & Arne Moeller & Florian Fröhlich, 2023. "Structure of the ceramide-bound SPOTS complex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Leslie A. Rowland & Adilson Guilherme & Felipe Henriques & Chloe DiMarzio & Sean Munroe & Nicole Wetoska & Mark Kelly & Keith Reddig & Gregory Hendricks & Meixia Pan & Xianlin Han & Olga R. Ilkayeva &, 2023. "De novo lipogenesis fuels adipocyte autophagosome and lysosome membrane dynamics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Dmitry Shvarev & Caroline König & Nicole Susan & Lars Langemeyer & Stefan Walter & Angela Perz & Florian Fröhlich & Christian Ungermann & Arne Moeller, 2024. "Structure of the endosomal CORVET tethering complex," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Salome Funes & Jonathan Jung & Del Hayden Gadd & Michelle Mosqueda & Jianjun Zhong & Shankaracharya & Matthew Unger & Karly Stallworth & Debra Cameron & Melissa S. Rotunno & Pepper Dawes & Megan Fowle, 2024. "Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    13. Seiichi Koike & Reinhard Jahn, 2024. "Rab GTPases and phosphoinositides fine-tune SNAREs dependent targeting specificity of intracellular vesicle traffic," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Matthew R. P. Parker & Laura L. E. Cowen & Jiguo Cao & Lloyd T. Elliott, 2023. "Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 43-58, March.
    15. Wei Zhang & Simon J. Bonner & Rachel S. McCrea, 2023. "Latent multinomial models for extended batch‐mark data," Biometrics, The International Biometric Society, vol. 79(3), pages 2732-2742, September.
    16. Yu-Te Yeh & Chandan Sona & Xin Yan & Yunxiao Li & Adrija Pathak & Mark I. McDermott & Zhigang Xie & Liangwen Liu & Anoop Arunagiri & Yuting Wang & Amaury Cazenave-Gassiot & Adhideb Ghosh & Ferdinand v, 2023. "Restoration of PITPNA in Type 2 diabetic human islets reverses pancreatic beta-cell dysfunction," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Yoko Ito & Nicolas Esnay & Matthieu Pierre Platre & Valérie Wattelet-Boyer & Lise C. Noack & Louise Fougère & Wilhelm Menzel & Stéphane Claverol & Laetitia Fouillen & Patrick Moreau & Yvon Jaillais & , 2021. "Sphingolipids mediate polar sorting of PIN2 through phosphoinositide consumption at the trans-Golgi network," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    18. Di-Ao Liu & Kai Tao & Bin Wu & Ziyan Yu & Malwina Szczepaniak & Matthew Rames & Changsong Yang & Tatyana Svitkina & Yueyao Zhu & Fengyuan Xu & Xiaolin Nan & Wei Guo, 2023. "A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26177-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.