IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46695-w.html
   My bibliography  Save this article

Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia

Author

Listed:
  • Salome Funes

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Jonathan Jung

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Del Hayden Gadd

    (University of Massachusetts Chan Medical School)

  • Michelle Mosqueda

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Jianjun Zhong

    (University of Massachusetts Chan Medical School
    The First Affiliated Hospital of Chongqing Medical University)

  • Shankaracharya

    (University of Massachusetts Chan Medical School)

  • Matthew Unger

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Karly Stallworth

    (University of Massachusetts Chan Medical School)

  • Debra Cameron

    (University of Massachusetts Chan Medical School)

  • Melissa S. Rotunno

    (University of Massachusetts Chan Medical School)

  • Pepper Dawes

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Megan Fowler-Magaw

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Pamela J. Keagle

    (University of Massachusetts Chan Medical School)

  • Justin A. McDonough

    (The Jackson Laboratory for Genomic Medicine)

  • Sivakumar Boopathy

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Miguel Sena-Esteves

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Jeffrey A. Nickerson

    (University of Massachusetts Medical School, Worcester)

  • Cathleen Lutz

    (Rare Disease Translational Center)

  • William C. Skarnes

    (The Jackson Laboratory for Genomic Medicine)

  • Elaine T. Lim

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Dorothy P. Schafer

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Francesca Massi

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • John E. Landers

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

  • Daryl A. Bosco

    (University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School
    University of Massachusetts Chan Medical School)

Abstract

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.

Suggested Citation

  • Salome Funes & Jonathan Jung & Del Hayden Gadd & Michelle Mosqueda & Jianjun Zhong & Shankaracharya & Matthew Unger & Karly Stallworth & Debra Cameron & Melissa S. Rotunno & Pepper Dawes & Megan Fowle, 2024. "Expression of ALS-PFN1 impairs vesicular degradation in iPSC-derived microglia," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46695-w
    DOI: 10.1038/s41467-024-46695-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46695-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46695-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chi-Hong Wu & Claudia Fallini & Nicola Ticozzi & Pamela J. Keagle & Peter C. Sapp & Katarzyna Piotrowska & Patrick Lowe & Max Koppers & Diane McKenna-Yasek & Desiree M. Baron & Jason E. Kost & Paloma , 2012. "Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis," Nature, Nature, vol. 488(7412), pages 499-503, August.
    2. Gilbert Di Paolo & Pietro De Camilli, 2006. "Phosphoinositides in cell regulation and membrane dynamics," Nature, Nature, vol. 443(7112), pages 651-657, October.
    3. Yingyao Zhou & Bin Zhou & Lars Pache & Max Chang & Alireza Hadj Khodabakhshi & Olga Tanaseichuk & Christopher Benner & Sumit K. Chanda, 2019. "Metascape provides a biologist-oriented resource for the analysis of systems-level datasets," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Andreas Herchenröther & Stefanie Gossen & Tobias Friedrich & Alexander Reim & Nadine Daus & Felix Diegmüller & Jörg Leers & Hakimeh Moghaddas Sani & Sarah Gerstner & Leah Schwarz & Inga Stellmacher & , 2023. "The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Hao A. Duong & Kenkichi Baba & Jason P. DeBruyne & Alec J. Davidson & Christopher Ehlen & Michael Powell & Gianluca Tosini, 2024. "Environmental circadian disruption re-writes liver circadian proteomes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Yue Huang & Ruipeng Mu & David Wen & Joseph S Grimsby & Meina Liang & Anton I Rosenbaum, 2021. "Differences in levels of phosphatidylinositols in healthy and stable Coronary Artery Disease subjects revealed by HILIC-MRM method with SERRF normalization," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    5. Ramachandran Prakasam & Angela Bonadiman & Roberta Andreotti & Emanuela Zuccaro & Davide Dalfovo & Caterina Marchioretti & Debasmita Tripathy & Gianluca Petris & Eric N. Anderson & Alice Migazzi & Lau, 2023. "LSD1/PRMT6-targeting gene therapy to attenuate androgen receptor toxic gain-of-function ameliorates spinobulbar muscular atrophy phenotypes in flies and mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    6. Li Guo & Cheng Hu & Yang Liu & Xiaoyu Chen & Deli Song & Runling Shen & Zhanzhen Liu & Xudong Jia & Qinfen Zhang & Yuanzhu Gao & Zhezhi Deng & Tao Zuo & Jun Hu & Wenbo Zhu & Jing Cai & Guangmei Yan & , 2023. "Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    8. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Antonio L Egea-Jiménez & Ángel Pérez-Lara & Senena Corbalán-García & Juan C Gómez-Fernández, 2013. "Phosphatidylinositol 4,5-Bisphosphate Decreases the Concentration of Ca2+, Phosphatidylserine and Diacylglycerol Required for Protein Kinase C α to Reach Maximum Activity," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    10. Elisa Bellucci & Andrea Benazzo & Chunming Xu & Elena Bitocchi & Monica Rodriguez & Saleh Alseekh & Valerio Di Vittori & Tania Gioia & Kerstin Neumann & Gaia Cortinovis & Giulia Frascarelli & Ester Mu, 2023. "Selection and adaptive introgression guided the complex evolutionary history of the European common bean," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Jiayin Peng & Lili Han & Biao Liu & Jiawen Song & Yuang Wang & Kunpeng Wang & Qian Guo & XinYan Liu & Yu Li & Jujin Zhang & Wenqing Wu & Sheng Li & Xin Fu & Cheng-le Zhuang & Weikang Zhang & Shengbao , 2023. "Gli1 marks a sentinel muscle stem cell population for muscle regeneration," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Brent S. Perlman & Noah Burget & Yeqiao Zhou & Gregory W. Schwartz & Jelena Petrovic & Zora Modrusan & Robert B. Faryabi, 2024. "Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Elisa Setten & Alessandra Castagna & Josué Manik Nava-Sedeño & Jonathan Weber & Roberta Carriero & Andreas Reppas & Valery Volk & Jessica Schmitz & Wilfried Gwinner & Haralampos Hatzikirou & Friedrich, 2022. "Understanding fibrosis pathogenesis via modeling macrophage-fibroblast interplay in immune-metabolic context," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    14. Dafne Ibarra-Morales & Michael Rauer & Piergiuseppe Quarato & Leily Rabbani & Fides Zenk & Mariana Schulte-Sasse & Francesco Cardamone & Alejandro Gomez-Auli & Germano Cecere & Nicola Iovino, 2021. "Histone variant H2A.Z regulates zygotic genome activation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    15. Ryuki Shimada & Yuzuru Kato & Naoki Takeda & Sayoko Fujimura & Kei-ichiro Yasunaga & Shingo Usuki & Hitoshi Niwa & Kimi Araki & Kei-ichiro Ishiguro, 2023. "STRA8–RB interaction is required for timely entry of meiosis in mouse female germ cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Xiang He & Daiqin Xiong & Lei Zhao & Jialong Fu & Lingfei Luo, 2024. "Meningeal lymphatic supporting cells govern the formation and maintenance of zebrafish mural lymphatic endothelial cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Guilherme Reis-de-Oliveira & Victor Corasolla Carregari & Gabriel Rodrigues dos Reis de Sousa & Daniel Martins-de-Souza, 2024. "OmicScope unravels systems-level insights from quantitative proteomics data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Maria J. Garcia-Leon & Cristina Liboni & Vincent Mittelheisser & Louis Bochler & Gautier Follain & Clarisse Mouriaux & Ignacio Busnelli & Annabel Larnicol & Florent Colin & Marina Peralta & Naël Osman, 2024. "Platelets favor the outgrowth of established metastases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Maria Thürmer & André Gollowitzer & Helmut Pein & Konstantin Neukirch & Elif Gelmez & Lorenz Waltl & Natalie Wielsch & René Winkler & Konstantin Löser & Julia Grander & Madlen Hotze & Sönke Harder & A, 2022. "PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    20. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46695-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.