IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i3p2732-2742.html
   My bibliography  Save this article

Latent multinomial models for extended batch‐mark data

Author

Listed:
  • Wei Zhang
  • Simon J. Bonner
  • Rachel S. McCrea

Abstract

Batch marking is common and useful for many capture–recapture studies where individual marks cannot be applied due to various constraints such as timing, cost, or marking difficulty. When batch marks are used, observed data are not individual capture histories but a set of counts including the numbers of individuals first marked, marked individuals that are recaptured, and individuals captured but released without being marked (applicable to some studies) on each capture occasion. Fitting traditional capture–recapture models to such data requires one to identify all possible sets of capture–recapture histories that may lead to the observed data, which is computationally infeasible even for a small number of capture occasions. In this paper, we propose a latent multinomial model to deal with such data, where the observed vector of counts is a non‐invertible linear transformation of a latent vector that follows a multinomial distribution depending on model parameters. The latent multinomial model can be fitted efficiently through a saddlepoint approximation based maximum likelihood approach. The model framework is very flexible and can be applied to data collected with different study designs. Simulation studies indicate that reliable estimation results are obtained for all parameters of the proposed model. We apply the model to analysis of golden mantella data collected using batch marks in Central Madagascar.

Suggested Citation

  • Wei Zhang & Simon J. Bonner & Rachel S. McCrea, 2023. "Latent multinomial models for extended batch‐mark data," Biometrics, The International Biometric Society, vol. 79(3), pages 2732-2742, September.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2732-2742
    DOI: 10.1111/biom.13789
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13789
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    2. Ming Zhou & Rachel S. McCrea & Eleni Matechou & Diana J. Cole & Richard A. Griffiths, 2019. "Removal models accounting for temporary emigration," Biometrics, The International Biometric Society, vol. 75(1), pages 24-35, March.
    3. Laura L. E. Cowen & Panagiotis Besbeas & Byron J. T. Morgan & Carl J. Schwarz, 2017. "Hidden Markov models for extended batch data," Biometrics, The International Biometric Society, vol. 73(4), pages 1321-1331, December.
    4. W. Zhang & M. V. Bravington & R. M. Fewster, 2019. "Fast likelihood‐based inference for latent count models using the saddlepoint approximation," Biometrics, The International Biometric Society, vol. 75(3), pages 723-733, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. David M Keith & Jessica A Sameoto & Freya M Keyser & Christine A Ward-Paige, 2020. "Evaluating socio-economic and conservation impacts of management: A case study of time-area closures on Georges Bank," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-25, October.
    3. Ben C. Stevenson & Rachel M. Fewster & Koustubh Sharma, 2022. "Spatial correlation structures for detections of individuals in spatial capture–recapture models," Biometrics, The International Biometric Society, vol. 78(3), pages 963-973, September.
    4. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    5. Xin Jin, 2021. "Can we imitate the principal investor's behavior to learn option price?," Papers 2105.11376, arXiv.org, revised Jan 2022.
    6. David L. Borchers & Peter Nightingale & Ben C. Stevenson & Rachel M. Fewster, 2022. "A latent capture history model for digital aerial surveys," Biometrics, The International Biometric Society, vol. 78(1), pages 274-285, March.
    7. Han, Jeongseop & Lee, Youngjo, 2024. "Enhanced Laplace approximation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    8. A. C. Davison & S. Hautphenne & A. Kraus, 2021. "Parameter estimation for discretely observed linear birth‐and‐death processes," Biometrics, The International Biometric Society, vol. 77(1), pages 186-196, March.
    9. Benny Ren & Ian Barnett, 2023. "Combining mixed effects hidden Markov models with latent alternating recurrent event processes to model diurnal active–rest cycles," Biometrics, The International Biometric Society, vol. 79(4), pages 3402-3417, December.
    10. Aaron Osgood‐Zimmerman & Jon Wakefield, 2023. "A Statistical Review of Template Model Builder: A Flexible Tool for Spatial Modelling," International Statistical Review, International Statistical Institute, vol. 91(2), pages 318-342, August.
    11. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    12. David L. Miller & Richard Glennie & Andrew E. Seaton, 2020. "Understanding the Stochastic Partial Differential Equation Approach to Smoothing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(1), pages 1-16, March.
    13. Théo Michelot & Richard Glennie & Catriona Harris & Len Thomas, 2021. "Varying-Coefficient Stochastic Differential Equations with Applications in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 446-463, September.
    14. Jenni Niku & Francis K. C. Hui & Sara Taskinen & David I. Warton, 2021. "Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    15. Daniel Ovando & Gary D. Libecap & Katherine D. Millage & Lennon Thomas, 2020. "Coasean Approaches to Ending Overfishing: Bigeye Tuna Conservation in the Western and Central Pacific Ocean," NBER Working Papers 27801, National Bureau of Economic Research, Inc.
    16. Jenni Niku & David I. Warton & Francis K. C. Hui & Sara Taskinen, 2017. "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 498-522, December.
    17. Yan Cui & Qi Li & Fukang Zhu, 2020. "Flexible bivariate Poisson integer-valued GARCH model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1449-1477, December.
    18. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.
    19. Flores-Agreda, Daniel & Cantoni, Eva, 2019. "Bootstrap estimation of uncertainty in prediction for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 130(C), pages 1-17.
    20. Tim C. D. Lucas & Anita K. Nandi & Elisabeth G. Chestnutt & Katherine A. Twohig & Suzanne H. Keddie & Emma L. Collins & Rosalind E. Howes & Michele Nguyen & Susan F. Rumisha & Andre Python & Rohan Ara, 2021. "Mapping malaria by sharing spatial information between incidence and prevalence data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 733-749, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2732-2742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.