IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18413-9.html
   My bibliography  Save this article

Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation

Author

Listed:
  • Michiko Shirane

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Mariko Wada

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Keiko Morita

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Nahoki Hayashi

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Reina Kunimatsu

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Yuki Matsumoto

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Fumiko Matsuzaki

    (Medical Institute of Bioregulation, Kyushu University)

  • Hirokazu Nakatsumi

    (Graduate School of Pharmaceutical Sciences, Nagoya City University)

  • Keisuke Ohta

    (Kurume University School of Medicine)

  • Yasushi Tamura

    (Faculty of Science, Yamagata University)

  • Keiichi I. Nakayama

    (Medical Institute of Bioregulation, Kyushu University)

Abstract

Endosome maturation depends on membrane contact sites (MCSs) formed between endoplasmic reticulum (ER) and endolysosomes (LyLEs). The mechanism underlying lipid supply for this process and its pathophysiological relevance remains unclear, however. Here, we identify PDZD8—the mammalian ortholog of a yeast ERMES subunit—as a protein that interacts with protrudin, which is located at ER-LyLE MCSs. Protrudin and PDZD8 promote the formation of ER-LyLE MCSs, and PDZD8 shows the ability to extract various lipids from the ER. Overexpression of both protrudin and PDZD8 in HeLa cells, as well as their depletion in mouse primary neurons, impairs endosomal homeostasis by inducing the formation of abnormal large vacuoles reminiscent of those apparent in spastin- or REEP1-deficient neurons. The protrudin-PDZD8 system is also essential for the establishment of neuronal polarity. Our results suggest that protrudin and PDZD8 cooperatively promote endosome maturation by mediating ER-LyLE tethering and lipid extraction at MCSs, thereby maintaining neuronal polarity and integrity.

Suggested Citation

  • Michiko Shirane & Mariko Wada & Keiko Morita & Nahoki Hayashi & Reina Kunimatsu & Yuki Matsumoto & Fumiko Matsuzaki & Hirokazu Nakatsumi & Keisuke Ohta & Yasushi Tamura & Keiichi I. Nakayama, 2020. "Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation," Nature Communications, Nature, vol. 11(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18413-9
    DOI: 10.1038/s41467-020-18413-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18413-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18413-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunyun Wang & Zhenni Li & Xinyu Wang & Ziyuan Zhao & Li Jiao & Ruming Liu & Keying Wang & Rui Ma & Yang Yang & Guo Chen & Yong Wang & Xin Bian, 2023. "Insights into membrane association of the SMP domain of extended synaptotagmin," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Darshini Jeyasimman & Bilge Ercan & Dennis Dharmawan & Tomoki Naito & Jingbo Sun & Yasunori Saheki, 2021. "PDZD-8 and TEX-2 regulate endosomal PI(4,5)P2 homeostasis via lipid transport to promote embryogenesis in C. elegans," Nature Communications, Nature, vol. 12(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18413-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.