IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v27y2024i3d10.1007_s10729-024-09672-9.html
   My bibliography  Save this article

Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set

Author

Listed:
  • Grigory Korzhenevich

    (Karlsruhe Institute of Technology)

  • Anne Zander

    (University of Twente)

Abstract

We present a freely available data set of surgical case mixes and surgery process duration distributions based on processed data from the German Operating Room Benchmarking initiative. This initiative collects surgical process data from over 320 German, Austrian, and Swiss hospitals. The data exhibits high levels of quantity, quality, standardization, and multi-dimensionality, making it especially valuable for operating room planning in Operations Research. We consider detailed steps of the perioperative process and group the data with respect to the hospital’s level of care, the surgery specialty, and the type of surgery patient. We compare case mixes for different subgroups and conclude that they differ significantly, demonstrating that it is necessary to test operating room planning methods in different settings, e.g., using data sets like ours. Further, we discuss limitations and future research directions. Finally, we encourage the extension and foundation of new operating room benchmarking initiatives and their usage for operating room planning.

Suggested Citation

  • Grigory Korzhenevich & Anne Zander, 2024. "Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set," Health Care Management Science, Springer, vol. 27(3), pages 328-351, September.
  • Handle: RePEc:kap:hcarem:v:27:y:2024:i:3:d:10.1007_s10729-024-09672-9
    DOI: 10.1007/s10729-024-09672-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-024-09672-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-024-09672-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyung Sung Jung & Michael Pinedo & Chelliah Sriskandarajah & Vikram Tiwari, 2019. "Scheduling Elective Surgeries with Emergency Patients at Shared Operating Rooms," Production and Operations Management, Production and Operations Management Society, vol. 28(6), pages 1407-1430, June.
    2. Sebastian Hof & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2017. "Case mix planning in hospitals: a review and future agenda," Health Care Management Science, Springer, vol. 20(2), pages 207-220, June.
    3. Oleg V. Shylo & Oleg A. Prokopyev & Andrew J. Schaefer, 2013. "Stochastic Operating Room Scheduling for High-Volume Specialties Under Block Booking," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 682-692, November.
    4. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    5. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    6. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    7. Blake, John T. & Carter, Michael W., 2002. "A goal programming approach to strategic resource allocation in acute care hospitals," European Journal of Operational Research, Elsevier, vol. 140(3), pages 541-561, August.
    8. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    9. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    10. Serhat Gul & Brian T. Denton & John W. Fowler, 2015. "A Progressive Hedging Approach for Surgery Planning Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 755-772, November.
    11. Asli Ozen & Yariv Marmor & Thomas Rohleder & Hari Balasubramanian & Jeanne Huddleston & Paul Huddleston, 2016. "Optimization and Simulation of Orthopedic Spine Surgery Cases at Mayo Clinic," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 157-175, February.
    12. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    13. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    14. Erik Demeulemeester & Jeroen Beliën & Brecht Cardoen & Michael Samudra, 2013. "Operating Room Planning and Scheduling," International Series in Operations Research & Management Science, in: Brian T. Denton (ed.), Handbook of Healthcare Operations Management, edition 127, chapter 0, pages 121-152, Springer.
    15. Inês Marques & M. Captivo & Margarida Vaz Pato, 2015. "A bicriteria heuristic for an elective surgery scheduling problem," Health Care Management Science, Springer, vol. 18(3), pages 251-266, September.
    16. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    17. Paul Joustra & Reinier Meester & Hans Ophem, 2013. "Can statisticians beat surgeons at the planning of operations?," Empirical Economics, Springer, vol. 44(3), pages 1697-1718, June.
    18. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    19. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    3. Lien Wang & Erik Demeulemeester & Nancy Vansteenkiste & Frank E. Rademakers, 2022. "On the use of partitioning for scheduling of surgeries in the inpatient surgical department," Health Care Management Science, Springer, vol. 25(4), pages 526-550, December.
    4. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    5. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    6. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    7. Zhaohui Li & Haiyue Yu & Zhaowei Zhou, 2024. "Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-29, July.
    8. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    9. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    10. Wang, Lien & Demeulemeester, Erik & Vansteenkiste, Nancy & Rademakers, Frank E., 2024. "Capacity and surgery partitioning: An approach for improving surgery scheduling in the inpatient surgical department," European Journal of Operational Research, Elsevier, vol. 313(1), pages 112-128.
    11. Range, Troels Martin & Kozlowski, Dawid & Petersen, Niels Chr., 2019. "Dynamic job assignment: A column generation approach with an application to surgery allocation," European Journal of Operational Research, Elsevier, vol. 272(1), pages 78-93.
    12. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    13. Anjomshoa, Hamideh & Dumitrescu, Irina & Lustig, Irvin & Smith, Olivia J., 2018. "An exact approach for tactical planning and patient selection for elective surgeries," European Journal of Operational Research, Elsevier, vol. 268(2), pages 728-739.
    14. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    15. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    16. Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
    17. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    18. Gökalp, E. & Gülpınar, N. & Doan, X.V., 2023. "Dynamic surgery management under uncertainty," European Journal of Operational Research, Elsevier, vol. 309(2), pages 832-844.
    19. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    20. Brittney Benchoff & Candace Arai Yano & Alexandra Newman, 2017. "Kaiser Permanente Oakland Medical Center Optimizes Operating Room Block Schedule for New Hospital," Interfaces, INFORMS, vol. 47(3), pages 214-229, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:27:y:2024:i:3:d:10.1007_s10729-024-09672-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.