IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i1d10.1007_s10951-017-0539-8.html
   My bibliography  Save this article

Case mix classification and a benchmark set for surgery scheduling

Author

Listed:
  • Gréanne Leeftink

    (University of Twente)

  • Erwin W. Hans

    (University of Twente)

Abstract

Numerous benchmark sets exist for combinatorial optimization problems. However, in healthcare scheduling, only a few benchmark sets are known, mainly focused on nurse rostering. One of the most studied topics in the healthcare scheduling literature is surgery scheduling, for which there is no widely used benchmark set. An effective benchmark set should be diverse, reflect the real world, contain large instances, and be extendable. This paper proposes a benchmark set for surgery scheduling algorithms, which satisfies these four criteria. Surgery scheduling instances are characterized by an underlying case mix, which describes the volume and properties of the surgery types. Given a case mix, unlimited random instances can be generated. A complete surgery scheduling benchmark set should encompass the diversity of prevalent case mixes. We therefore propose a case mix classification scheme, which we use to typify both real-life and theoretical case mixes that span the breadth of possible case mix types. Our full benchmark set contains 20,880 instances, with a small benchmark subset of 146 instances. The instances are generated based on real-life case mixes (11 surgical specialties), as well as theoretical instances. The instances were generated using a novel instance generation procedure, which introduces the concept of “instance proximity” to measure the similarity between two instances, and which uses this concept to generate sets of instances that are as diverse as possible.

Suggested Citation

  • Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:1:d:10.1007_s10951-017-0539-8
    DOI: 10.1007/s10951-017-0539-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0539-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0539-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. L. Kok & C. M. Meyer & H. Kopfer & J. M. J. Schutten, 2010. "A Dynamic Programming Heuristic for the Vehicle Routing Problem with Time Windows and European Community Social Legislation," Transportation Science, INFORMS, vol. 44(4), pages 442-454, November.
    2. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    3. Brailsford, Sally & Vissers, Jan, 2011. "OR in healthcare: A European perspective," European Journal of Operational Research, Elsevier, vol. 212(2), pages 223-234, July.
    4. Stepaniak, P.S. & Heij, C. & de Vries, G., 2009. "Modeling and prediction of surgical procedure times," Econometric Institute Research Papers EI 2009-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    6. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    7. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    8. Kolisch, Rainer & Schwindt, Christoph & Sprecher, Arno, 1999. "Benchmark instances for project scheduling problems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Musliu, Nysret & Schaerf, Andrea & Slany, Wolfgang, 2004. "Local search for shift design," European Journal of Operational Research, Elsevier, vol. 153(1), pages 51-64, February.
    10. Agrawal, M. K. & Elmaghraby, S. E. & Herroelen, W. S., 1996. ": A generator of testsets for project activity nets," European Journal of Operational Research, Elsevier, vol. 90(2), pages 376-382, April.
    11. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    12. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    13. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    14. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    15. Drexl, Andreas & Nissen, Rudiger & Patterson, James H. & Salewski, Frank, 2000. "ProGen/[pi]x - An instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions," European Journal of Operational Research, Elsevier, vol. 125(1), pages 59-72, August.
    16. Marcon, Eric & Kharraja, Said & Simonnet, Gerard, 2003. "The operating theatre planning by the follow-up of the risk of no realization," International Journal of Production Economics, Elsevier, vol. 85(1), pages 83-90, July.
    17. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    18. Stefaan Haspeslagh & Patrick De Causmaecker & Andrea Schaerf & Martin Stølevik, 2014. "The first international nurse rostering competition 2010," Annals of Operations Research, Springer, vol. 218(1), pages 221-236, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. A, Augustin & P, Jouvet & N, Lahrichi & A, Lodi & LM, Rousseau, 2022. "A data-driven approach to include availability of ICU beds in the planning of the operating room," Omega, Elsevier, vol. 109(C).
    3. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    4. McRae, Sebastian & Brunner, Jens O., 2020. "Assessing the impact of uncertainty and the level of aggregation in case mix planning," Omega, Elsevier, vol. 97(C).
    5. Lien Wang & Erik Demeulemeester & Nancy Vansteenkiste & Frank E. Rademakers, 2022. "On the use of partitioning for scheduling of surgeries in the inpatient surgical department," Health Care Management Science, Springer, vol. 25(4), pages 526-550, December.
    6. Sebastian McRae & Jens O. Brunner & Jonathan F. Bard, 2020. "Analyzing economies of scale and scope in hospitals by use of case mix planning," Health Care Management Science, Springer, vol. 23(1), pages 80-101, March.
    7. Vandenberghe, Mathieu & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Bruneel, Herwig, 2019. "Surgery sequencing to minimize the expected maximum waiting time of emergent patients," European Journal of Operational Research, Elsevier, vol. 275(3), pages 971-982.
    8. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    9. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    2. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    3. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    4. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    5. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    6. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    7. van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
    8. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    9. Sagnol, Guillaume & Barner, Christoph & Borndörfer, Ralf & Grima, Mickaël & Seeling, Matthes & Spies, Claudia & Wernecke, Klaus, 2018. "Robust allocation of operating rooms: A cutting plane approach to handle lognormal case durations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 420-435.
    10. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    11. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    12. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2024. "Wasserstein distributionally robust surgery scheduling with elective and emergency patients," European Journal of Operational Research, Elsevier, vol. 314(2), pages 509-522.
    13. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    14. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    15. Aida Jebali & Ali Diabat, 2015. "A stochastic model for operating room planning under capacity constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7252-7270, December.
    16. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    17. Lamiri, Mehdi & Grimaud, Frédéric & Xie, Xiaolan, 2009. "Optimization methods for a stochastic surgery planning problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 400-410, August.
    18. Duma, Davide & Aringhieri, Roberto, 2019. "The management of non-elective patients: shared vs. dedicated policies," Omega, Elsevier, vol. 83(C), pages 199-212.
    19. Azar, Macarena & Carrasco, Rodrigo A. & Mondschein, Susana, 2022. "Dealing with uncertain surgery times in operating room scheduling," European Journal of Operational Research, Elsevier, vol. 299(1), pages 377-394.
    20. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:1:d:10.1007_s10951-017-0539-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.