IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v286y2020i1p336-349.html
   My bibliography  Save this article

Minimizing bed occupancy variance by scheduling patients under uncertainty

Author

Listed:
  • van den Broek d’Obrenan, Anne
  • Ridder, Ad
  • Roubos, Dennis
  • Stougie, Leen

Abstract

In this paper we consider the problem of scheduling patients in allocated surgery blocks in a Master Surgical Schedule. We pay attention to both the available surgery blocks and the bed occupancy in the hospital wards. More specifically, large probabilities of overtime in each surgery block are undesirable and costly, while large fluctuations in the number of used beds requires extra buffer capacity and makes the staff planning more challenging. The stochastic nature of surgery durations and length of stay on a ward hinders the use of classical techniques. Transforming the stochastic problem into a deterministic problem does not result into practically feasible solutions. In this paper we develop a technique to solve the stochastic scheduling problem, whose primary objective it to minimize variation in the necessary bed capacity, while maximizing the number of patients operated, and minimizing the maximum waiting time, and guaranteeing a small probability of overtime in surgery blocks. The method starts with solving an Integer Linear Programming (ILP) formulation of the problem, and then simulation and local search techniques are applied to guarantee small probabilities of overtime and to improve upon the ILP solution. Numerical experiments applied to a Dutch hospital show promising results.

Suggested Citation

  • van den Broek d’Obrenan, Anne & Ridder, Ad & Roubos, Dennis & Stougie, Leen, 2020. "Minimizing bed occupancy variance by scheduling patients under uncertainty," European Journal of Operational Research, Elsevier, vol. 286(1), pages 336-349.
  • Handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:336-349
    DOI: 10.1016/j.ejor.2020.03.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172030240X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.03.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B Zhang & P Murali & M M Dessouky & D Belson, 2009. "A mixed integer programming approach for allocating operating room capacity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 663-673, May.
    2. Belien, Jeroen & Demeulemeester, Erik, 2007. "Building cyclic master surgery schedules with leveled resulting bed occupancy," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1185-1204, January.
    3. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    4. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    5. Jose M. Molina-Pariente & Erwin W. Hans & Jose M. Framinan, 2018. "A stochastic approach for solving the operating room scheduling problem," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 224-251, June.
    6. Hans, Erwin & Wullink, Gerhard & van Houdenhoven, Mark & Kazemier, Geert, 2008. "Robust surgery loading," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1038-1050, March.
    7. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    8. Enis Kayış & Taghi Khaniyev & Jaap Suermondt & Karl Sylvester, 2015. "A robust estimation model for surgery durations with temporal, operational, and surgery team effects," Health Care Management Science, Springer, vol. 18(3), pages 222-233, September.
    9. Neyshabouri, Saba & Berg, Bjorn P., 2017. "Two-stage robust optimization approach to elective surgery and downstream capacity planning," European Journal of Operational Research, Elsevier, vol. 260(1), pages 21-40.
    10. Stepaniak, P.S. & Heij, C. & de Vries, G., 2009. "Modeling and prediction of surgical procedure times," Econometric Institute Research Papers EI 2009-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    12. Fügener, Andreas & Hans, Erwin W. & Kolisch, Rainer & Kortbeek, Nikky & Vanberkel, Peter T., 2014. "Master surgery scheduling with consideration of multiple downstream units," European Journal of Operational Research, Elsevier, vol. 239(1), pages 227-236.
    13. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    14. René Bekker & Paulien Koeleman, 2011. "Scheduling admissions and reducing variability in bed demand," Health Care Management Science, Springer, vol. 14(3), pages 237-249, September.
    15. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    16. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    17. Min, Daiki & Yih, Yuehwern, 2010. "Scheduling elective surgery under uncertainty and downstream capacity constraints," European Journal of Operational Research, Elsevier, vol. 206(3), pages 642-652, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    3. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    4. Chengliang Wang & Feifei Yang & Quan-Lin Li, 2023. "Optimal Decision of Dynamic Bed Allocation and Patient Admission with Buffer Wards during an Epidemic," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    5. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    2. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    3. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    4. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    5. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    6. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    7. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    8. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    9. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    10. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    11. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    12. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    13. Anjomshoa, Hamideh & Dumitrescu, Irina & Lustig, Irvin & Smith, Olivia J., 2018. "An exact approach for tactical planning and patient selection for elective surgeries," European Journal of Operational Research, Elsevier, vol. 268(2), pages 728-739.
    14. Morteza Lalmazloumian & M. Fazle Baki & Majid Ahmadi, 2023. "A two-stage stochastic optimization framework to allocate operating room capacity in publicly-funded hospitals under uncertainty," Health Care Management Science, Springer, vol. 26(2), pages 238-260, June.
    15. Xiangyong Li & N. Rafaliya & M. Fazle Baki & Ben A. Chaouch, 2017. "Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming," Health Care Management Science, Springer, vol. 20(1), pages 33-54, March.
    16. Gréanne Leeftink & Erwin W. Hans, 2018. "Case mix classification and a benchmark set for surgery scheduling," Journal of Scheduling, Springer, vol. 21(1), pages 17-33, February.
    17. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    18. Wang, Yu & Zhang, Yu & Tang, Jiafu, 2019. "A distributionally robust optimization approach for surgery block allocation," European Journal of Operational Research, Elsevier, vol. 273(2), pages 740-753.
    19. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    20. Mariana Oliveira & Filippo Visintin & Daniel Santos & Inês Marques, 2022. "Flexible master surgery scheduling: combining optimization and simulation in a rolling horizon approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 824-858, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:286:y:2020:i:1:p:336-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.