IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v47y2024i5d10.1007_s10878-024-01167-1.html
   My bibliography  Save this article

Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms

Author

Listed:
  • Zhaohui Li

    (University of Electronic Science and Technology of China)

  • Haiyue Yu

    (Shanghai University of Traditional Chinese Medicine)

  • Zhaowei Zhou

    (Fudan University)

Abstract

The problem studied in this paper is elective surgery scheduling, with resource constraints in each of the three following stages: preoperative, perioperative, and postoperative stages. With the integrated availability of hospital beds in wards and operating rooms, the aim is to determine operation start times of surgeries and allocate the hospital beds to patients while getting patients treated as soon as possible. This task is crucial in providing timely treatments for the patients while ensuring the hospital’s resource utilization balance. For the problem, we first formulate it as mixed-integer programming, which is NP-complete. Then, we propose several heuristics to overcome the long computation time. To make the solution better, we also propose improved algorithms. Finally, we conduct a series of numerical studies to illustrate the efficiency of our proposed algorithms and examine the impact of the number of jobs, beds, and surgery blocks on the performance measure. Computational experiments showed the superior performance of our heuristics in makespan.

Suggested Citation

  • Zhaohui Li & Haiyue Yu & Zhaowei Zhou, 2024. "Scheduling of elective operations with coordinated utilization of hospital beds and operating rooms," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-29, July.
  • Handle: RePEc:spr:jcomop:v:47:y:2024:i:5:d:10.1007_s10878-024-01167-1
    DOI: 10.1007/s10878-024-01167-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01167-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01167-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Angela Testi & Elena Tanfani & Giancarlo Torre, 2007. "A three-phase approach for operating theatre schedules," Health Care Management Science, Springer, vol. 10(2), pages 163-172, June.
    3. Sebastian Hof & Andreas Fügener & Jan Schoenfelder & Jens O. Brunner, 2017. "Case mix planning in hospitals: a review and future agenda," Health Care Management Science, Springer, vol. 20(2), pages 207-220, June.
    4. Liwei Zhong & Shoucheng Luo & Lidong Wu & Lin Xu & Jinghui Yang & Guochun Tang, 2014. "A two-stage approach for surgery scheduling," Journal of Combinatorial Optimization, Springer, vol. 27(3), pages 545-556, April.
    5. S. Ayca Erdogan & Alexander Gose & Brian T. Denton, 2015. "Online appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1267-1286, November.
    6. Belien, Jeroen & Demeulemeester, Erik, 2007. "Building cyclic master surgery schedules with leveled resulting bed occupancy," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1185-1204, January.
    7. Christiane Barz & Kumar Rajaram, 2015. "Elective Patient Admission and Scheduling under Multiple Resource Constraints," Production and Operations Management, Production and Operations Management Society, vol. 24(12), pages 1907-1930, December.
    8. Angela Testi & Elena Tànfani, 2009. "Tactical and operational decisions for operating room planning: Efficiency and welfare implications," Health Care Management Science, Springer, vol. 12(4), pages 363-373, December.
    9. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    10. Blake, John T. & Carter, Michael W., 2002. "A goal programming approach to strategic resource allocation in acute care hospitals," European Journal of Operational Research, Elsevier, vol. 140(3), pages 541-561, August.
    11. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    12. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.
    13. D C Lane & C Monefeldt & J V Rosenhead, 2000. "Looking in the wrong place for healthcare improvements: A system dynamics study of an accident and emergency department," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 518-531, May.
    14. Shan Wang & Huiqiao Su & Guohua Wan, 2015. "Resource-constrained machine scheduling with machine eligibility restriction and its applications to surgical operations scheduling," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 982-995, November.
    15. Bastos, Leonardo S.L. & Marchesi, Janaina F. & Hamacher, Silvio & Fleck, Julia L., 2019. "A mixed integer programming approach to the patient admission scheduling problem," European Journal of Operational Research, Elsevier, vol. 273(3), pages 831-840.
    16. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    17. Mohammad Mahdi Nasiri & Meysam Rahvar, 2017. "A two-step multi-objective mathematical model for nurse scheduling problem considering nurse preferences and consecutive shifts," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 27(1), pages 83-101.
    18. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    19. Peter J H Hulshof & Nikky Kortbeek & Richard J Boucherie & Erwin W Hans & Piet J M Bakker, 2012. "Taxonomic classification of planning decisions in health care: a structured review of the state of the art in OR/MS," Health Systems, Taylor & Francis Journals, vol. 1(2), pages 129-175, December.
    20. P T Vanberkel & R J Boucherie & E W Hans & J L Hurink & W A M van Lent & W H van Harten, 2011. "An exact approach for relating recovering surgical patient workload to the master surgical schedule," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1851-1860, October.
    21. Saremi, Alireza & Jula, Payman & ElMekkawy, Tarek & Wang, G. Gary, 2013. "Appointment scheduling of outpatient surgical services in a multistage operating room department," International Journal of Production Economics, Elsevier, vol. 141(2), pages 646-658.
    22. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    23. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    24. Penn, M.L. & Potts, C.N. & Harper, P.R., 2017. "Multiple criteria mixed-integer programming for incorporating multiple factors into the development of master operating theatre timetables," European Journal of Operational Research, Elsevier, vol. 262(1), pages 194-206.
    25. Narges Hosseini & Kevin Taaffe, 2015. "Allocating operating room block time using historical caseload variability," Health Care Management Science, Springer, vol. 18(4), pages 419-430, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    2. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.
    3. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    4. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    5. Loïc Deklerck & Babak Akbarzadeh & Broos Maenhout, 2022. "Constructing and evaluating a master surgery schedule using a service-level approach," Operational Research, Springer, vol. 22(4), pages 3663-3711, September.
    6. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    7. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    8. repec:ipg:wpaper:14 is not listed on IDEAS
    9. repec:ipg:wpaper:201414 is not listed on IDEAS
    10. Brittney Benchoff & Candace Arai Yano & Alexandra Newman, 2017. "Kaiser Permanente Oakland Medical Center Optimizes Operating Room Block Schedule for New Hospital," Interfaces, INFORMS, vol. 47(3), pages 214-229, June.
    11. Nico Dellaert & Jully Jeunet, 2013. "Pareto optimal strategies for improved operational plans of elective patients under multiple constrained resources," Working Papers 2013-14, Department of Research, Ipag Business School.
    12. Anjomshoa, Hamideh & Dumitrescu, Irina & Lustig, Irvin & Smith, Olivia J., 2018. "An exact approach for tactical planning and patient selection for elective surgeries," European Journal of Operational Research, Elsevier, vol. 268(2), pages 728-739.
    13. Mohammad Mahdi Nasiri & Farzaneh Shakouhi & Fariborz Jolai, 2019. "A fuzzy robust stochastic mathematical programming approach for multi-objective scheduling of the surgical cases," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 890-910, September.
    14. Grigory Korzhenevich & Anne Zander, 2024. "Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set," Health Care Management Science, Springer, vol. 27(3), pages 328-351, September.
    15. Shan Wang & Huiqiao Su & Guohua Wan, 2015. "Resource-constrained machine scheduling with machine eligibility restriction and its applications to surgical operations scheduling," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 982-995, November.
    16. Xiangyong Li & N. Rafaliya & M. Fazle Baki & Ben A. Chaouch, 2017. "Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming," Health Care Management Science, Springer, vol. 20(1), pages 33-54, March.
    17. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    18. Kamran Kianfar & Arezoo Atighehchian, 2023. "A hybrid heuristic approach to master surgery scheduling with downstream resource constraints and dividable operating room blocks," Annals of Operations Research, Springer, vol. 328(1), pages 727-754, September.
    19. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    20. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    21. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    22. Akbarzadeh, Babak & Maenhout, Broos, 2024. "A study on policy decisions to embed flexibility for reactive recovery in the planning and scheduling process in operating rooms," Omega, Elsevier, vol. 126(C).
    23. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:47:y:2024:i:5:d:10.1007_s10878-024-01167-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.