IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v31y2023i4d10.1007_s10100-022-00835-z.html
   My bibliography  Save this article

Operating room scheduling with surgical team: a new approach with constraint programming and goal programming

Author

Listed:
  • Şeyda Gür

    (Organized Industrial Zone Vocational School)

  • Mehmet Pınarbaşı

    (Kırıkkale University)

  • Hacı Mehmet Alakaş

    (Kırıkkale University)

  • Tamer Eren

    (Kırıkkale University)

Abstract

In recent years, there has been a significant increase in health expenditures due to population growth. In this context, hospital administrators have started to look for ways to use existing resources effectively. Operating rooms are one of the most important units of a hospital. The efficient use of these units is seen as a decrease in cost items and an increase in revenues. At this point, it is aimed to use the operating rooms effectively in this study. The fact that it contains many uncertainties and many stakeholders in its structure complicates the solution process of the operating room scheduling problem. In this study, planning was made that considered the uncertainty in the operation times and the surgeons, nurses, and anesthesiologists in the surgical team. To solve the problem, the logical modeling power of the constraint programming method and the power of the goal programming method to stretch rigid constraints were utilized. In the first stage, the balanced assignment of the surgical team (surgeon–nurse–anesthesiologist) was carried out, while in the second stage, operations were assigned to the operating rooms. The proposed model was evaluated according to the operating rooms' utilization rates and the solution's effectiveness. The results showed that the proposed model successfully created an effective and efficient schedule.

Suggested Citation

  • Şeyda Gür & Mehmet Pınarbaşı & Hacı Mehmet Alakaş & Tamer Eren, 2023. "Operating room scheduling with surgical team: a new approach with constraint programming and goal programming," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1061-1085, December.
  • Handle: RePEc:spr:cejnor:v:31:y:2023:i:4:d:10.1007_s10100-022-00835-z
    DOI: 10.1007/s10100-022-00835-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-022-00835-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-022-00835-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    2. Jin Wang & Hainan Guo & Kwok-Leung Tsui, 2021. "Two-stage robust optimisation for surgery scheduling considering surgeon collaboration," International Journal of Production Research, Taylor & Francis Journals, vol. 59(21), pages 6437-6450, November.
    3. Thibaud Monteiro & Nadine Meskens & Tao Wang, 2015. "Surgical scheduling with antagonistic human resource objectives," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7434-7449, December.
    4. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    5. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    6. Francisco Ballestín & Ángeles Pérez & Sacramento Quintanilla, 2019. "Scheduling and rescheduling elective patients in operating rooms to minimise the percentage of tardy patients," Journal of Scheduling, Springer, vol. 22(1), pages 107-118, February.
    7. Khaniyev, Taghi & Kayış, Enis & Güllü, Refik, 2020. "Next-day operating room scheduling with uncertain surgery durations: Exact analysis and heuristics," European Journal of Operational Research, Elsevier, vol. 286(1), pages 49-62.
    8. Penn, M.L. & Potts, C.N. & Harper, P.R., 2017. "Multiple criteria mixed-integer programming for incorporating multiple factors into the development of master operating theatre timetables," European Journal of Operational Research, Elsevier, vol. 262(1), pages 194-206.
    9. Mengyu Guo & Su Wu & Binfeng Li & Jie Song & Youping Rong, 2016. "Integrated scheduling of elective surgeries and surgical nurses for operating room suites," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 166-181, June.
    10. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    11. M Arenas & A Bilbao & R Caballero & T Gómez & M V Rodríguez & F Ruiz, 2002. "Analysis via goal programming of the minimum achievable stay in surgical waiting lists," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(4), pages 387-396, April.
    12. Yao Xiao & Reena Yoogalingam, 2021. "Reserved capacity policies for operating room scheduling," Operations Management Research, Springer, vol. 14(1), pages 107-122, June.
    13. Zakaria Yahia & Amr B. Eltawil & Nermine A. Harraz, 2016. "The operating room case-mix problem under uncertainty and nurses capacity constraints," Health Care Management Science, Springer, vol. 19(4), pages 383-394, December.
    14. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    15. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    16. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    17. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Yanbo Ma & Kaiyue Liu & Zheng Li & Xiang Chen, 2022. "Robust Operating Room Scheduling Model with Violation Probability Consideration under Uncertain Surgery Duration," IJERPH, MDPI, vol. 19(20), pages 1-20, October.
    3. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    4. Akbarzadeh, Babak & Maenhout, Broos, 2024. "A study on policy decisions to embed flexibility for reactive recovery in the planning and scheduling process in operating rooms," Omega, Elsevier, vol. 126(C).
    5. Grigory Korzhenevich & Anne Zander, 2024. "Leveraging the potential of the German operating room benchmarking initiative for planning: A ready-to-use surgical process data set," Health Care Management Science, Springer, vol. 27(3), pages 328-351, September.
    6. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    7. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    8. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    9. Sebastian McRae & Jens O. Brunner & Jonathan F. Bard, 2020. "Analyzing economies of scale and scope in hospitals by use of case mix planning," Health Care Management Science, Springer, vol. 23(1), pages 80-101, March.
    10. Şeyda Gür & Tamer Eren & Hacı Mehmet Alakaş, 2019. "Surgical Operation Scheduling with Goal Programming and Constraint Programming: A Case Study," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    11. Rachuba, Sebastian & Imhoff, Lisa & Werners, Brigitte, 2022. "Tactical blueprints for surgical weeks – An integrated approach for operating rooms and intensive care units," European Journal of Operational Research, Elsevier, vol. 298(1), pages 243-260.
    12. Thomas Schneider, A.J. & Theresia van Essen, J. & Carlier, Mijke & Hans, Erwin W., 2020. "Scheduling surgery groups considering multiple downstream resources," European Journal of Operational Research, Elsevier, vol. 282(2), pages 741-752.
    13. Jian-Jun Wang & Zongli Dai & Wenxuan Zhang & Jim Junmin Shi, 2023. "Operating room scheduling for non-operating room anesthesia with emergency uncertainty," Annals of Operations Research, Springer, vol. 321(1), pages 565-588, February.
    14. Aringhieri, Roberto & Duma, Davide & Landa, Paolo & Mancini, Simona, 2022. "Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation," European Journal of Operational Research, Elsevier, vol. 298(2), pages 627-643.
    15. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    16. Tsai, Shing Chih & Yeh, Yingchieh & Kuo, Chen Yun, 2021. "Efficient optimization algorithms for surgical scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 293(2), pages 579-593.
    17. repec:ipg:wpaper:2013-014 is not listed on IDEAS
    18. Steffen Heider & Jan Schoenfelder & Thomas Koperna & Jens O. Brunner, 2022. "Balancing control and autonomy in master surgery scheduling: Benefits of ICU quotas for recovery units," Health Care Management Science, Springer, vol. 25(2), pages 311-332, June.
    19. Sebastian Rachuba & Brigitte Werners, 2017. "A fuzzy multi-criteria approach for robust operating room schedules," Annals of Operations Research, Springer, vol. 251(1), pages 325-350, April.
    20. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    21. F. Davarian & J. Behnamian, 2022. "Robust finite-horizon scheduling/rescheduling of operating rooms with elective and emergency surgeries under resource constraints," Journal of Scheduling, Springer, vol. 25(6), pages 625-641, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:31:y:2023:i:4:d:10.1007_s10100-022-00835-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.