IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v67y2021i10p6174-6197.html
   My bibliography  Save this article

A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results

Author

Listed:
  • Beau Coker

    (Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115)

  • Cynthia Rudin

    (Department of Computer Science and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708)

  • Gary King

    (Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts 02138)

Abstract

Inference is the process of using facts we know to learn about facts we do not know. A theory of inference gives assumptions necessary to get from the former to the latter, along with a definition for and summary of the resulting uncertainty. Any one theory of inference is neither right nor wrong but merely an axiom that may or may not be useful. Each of the many diverse theories of inference can be valuable for certain applications. However, no existing theory of inference addresses the tendency to choose, from the range of plausible data analysis specifications consistent with prior evidence, those that inadvertently favor one’s own hypotheses. Because the biases from these choices are a growing concern across scientific fields, and in a sense the reason the scientific community was invented in the first place, we introduce a new theory of inference designed to address this critical problem. We introduce hacking intervals , which are the range of a summary statistic one may obtain given a class of possible endogenous manipulations of the data. Hacking intervals require no appeal to hypothetical data sets drawn from imaginary superpopulations. A scientific result with a small hacking interval is more robust to researcher manipulation than one with a larger interval and is often easier to interpret than a classical confidence interval. Some versions of hacking intervals turn out to be equivalent to classical confidence intervals, which means they may also provide a more intuitive and potentially more useful interpretation of classical confidence intervals.

Suggested Citation

  • Beau Coker & Cynthia Rudin & Gary King, 2021. "A Theory of Statistical Inference for Ensuring the Robustness of Scientific Results," Management Science, INFORMS, vol. 67(10), pages 6174-6197, October.
  • Handle: RePEc:inm:ormnsc:v:67:y:2021:i:10:p:6174-6197
    DOI: 10.1287/mnsc.2020.3818
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3818
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. Daniel J. Benjamin & James O. Berger & Magnus Johannesson & Brian A. Nosek & E.-J. Wagenmakers & Richard Berk & Kenneth A. Bollen & Björn Brembs & Lawrence Brown & Colin Camerer & David Cesarini & Chr, 2018. "Redefine statistical significance," Nature Human Behaviour, Nature, vol. 2(1), pages 6-10, January.
      • Daniel Benjamin & James Berger & Magnus Johannesson & Brian Nosek & E. Wagenmakers & Richard Berk & Kenneth Bollen & Bjorn Brembs & Lawrence Brown & Colin Camerer & David Cesarini & Christopher Chambe, 2017. "Redefine Statistical Significance," Artefactual Field Experiments 00612, The Field Experiments Website.
    3. Iacus, Stefano M. & King, Gary & Porro, Giuseppe, 2011. "Multivariate Matching Methods That Are Monotonic Imbalance Bounding," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 345-361.
    4. Ronald L. Wasserstein & Nicole A. Lazar, 2016. "The ASA's Statement on p -Values: Context, Process, and Purpose," The American Statistician, Taylor & Francis Journals, vol. 70(2), pages 129-133, May.
    5. Megan L Head & Luke Holman & Rob Lanfear & Andrew T Kahn & Michael D Jennions, 2015. "The Extent and Consequences of P-Hacking in Science," PLOS Biology, Public Library of Science, vol. 13(3), pages 1-15, March.
    6. Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
    7. Leamer, Edward E, 1983. "Let's Take the Con Out of Econometrics," American Economic Review, American Economic Association, vol. 73(1), pages 31-43, March.
    8. Jan Hannig & Hari Iyer & Randy C. S. Lai & Thomas C. M. Lee, 2016. "Generalized Fiducial Inference: A Review and New Results," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1346-1361, July.
    9. C. Glenn Begley & Lee M. Ellis, 2012. "Raise standards for preclinical cancer research," Nature, Nature, vol. 483(7391), pages 531-533, March.
    10. Camerer, Colin & Dreber, Anna & Forsell, Eskil & Ho, Teck-Hua & Huber, Jurgen & Johannesson, Magnus & Kirchler, Michael & Almenberg, Johan & Altmejd, Adam & Chan, Taizan & Heikensten, Emma & Holzmeist, 2016. "Evaluating replicability of laboratory experiments in Economics," MPRA Paper 75461, University Library of Munich, Germany.
    11. Ryan J. Tibshirani & Jonathan Taylor & Richard Lockhart & Robert Tibshirani, 2016. "Exact Post-Selection Inference for Sequential Regression Procedures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 600-620, April.
    12. King, Gary & Zeng, Langche, 2006. "The Dangers of Extreme Counterfactuals," Political Analysis, Cambridge University Press, vol. 14(2), pages 131-159, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    2. Md Saiful Islam & Md Sarowar Morshed & Md. Noor-E-Alam, 2022. "A Computational Framework for Solving Nonlinear Binary Optimization Problems in Robust Causal Inference," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3023-3041, November.
    3. Aparajithan Venkateswaran & Anirudh Sankar & Arun G. Chandrasekhar & Tyler H. McCormick, 2024. "Robustly estimating heterogeneity in factorial data using Rashomon Partitions," Papers 2404.02141, arXiv.org, revised Aug 2024.
    4. Marco Morucci & Md. Noor-E-Alam & Cynthia Rudin, 2022. "A Robust Approach to Quantifying Uncertainty in Matching Problems of Causal Inference," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 156-171, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colin F. Camerer & Anna Dreber & Felix Holzmeister & Teck-Hua Ho & Jürgen Huber & Magnus Johannesson & Michael Kirchler & Gideon Nave & Brian A. Nosek & Thomas Pfeiffer & Adam Altmejd & Nick Buttrick , 2018. "Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015," Nature Human Behaviour, Nature, vol. 2(9), pages 637-644, September.
    2. Rinne, Sonja, 2024. "Estimating the merit-order effect using coarsened exact matching: Reconciling theory with the empirical results to improve policy implications," Energy Policy, Elsevier, vol. 185(C).
    3. Anna Dreber & Magnus Johannesson & Yifan Yang, 2024. "Selective reporting of placebo tests in top economics journals," Economic Inquiry, Western Economic Association International, vol. 62(3), pages 921-932, July.
    4. Graham Elliott & Nikolay Kudrin & Kaspar Wuthrich, 2022. "The Power of Tests for Detecting $p$-Hacking," Papers 2205.07950, arXiv.org, revised Apr 2024.
    5. Baltussen, Guido & Swinkels, Laurens & Van Vliet, Pim, 2021. "Global factor premiums," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1128-1154.
    6. Schweinsberg, Martin & Feldman, Michael & Staub, Nicola & van den Akker, Olmo R. & van Aert, Robbie C.M. & van Assen, Marcel A.L.M. & Liu, Yang & Althoff, Tim & Heer, Jeffrey & Kale, Alex & Mohamed, Z, 2021. "Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis," Organizational Behavior and Human Decision Processes, Elsevier, vol. 165(C), pages 228-249.
    7. Guillaume Coqueret, 2023. "Forking paths in financial economics," Papers 2401.08606, arXiv.org.
    8. Gunter, Ulrich & Önder, Irem & Smeral, Egon, 2019. "Scientific value of econometric tourism demand studies," Annals of Tourism Research, Elsevier, vol. 78(C), pages 1-1.
    9. Johnson, Samuel G. B., 2019. "Toward a cognitive science of markets: Economic agents as sense-makers," Economics Discussion Papers 2019-10, Kiel Institute for the World Economy (IfW Kiel).
    10. Johnstone, David, 2022. "Accounting research and the significance test crisis," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 89(C).
    11. Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüß & Michael Razen & Utz Weitzel & David Abad‐Díaz & Menachem (Meni) Abudy , 2024. "Nonstandard Errors," Journal of Finance, American Finance Association, vol. 79(3), pages 2339-2390, June.
      • Albert J. Menkveld & Anna Dreber & Félix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Gunther Capelle-Blancard, 2021. "Non-Standard Errors," Documents de travail du Centre d'Economie de la Sorbonne 21033, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Kirchler, Michael & Neusüss, Sebastian & Razen, Michael & Weitzel, Utz & Abad-Díaz, David & Abudy, Mena, 2021. "Non-Standard Errors," Working Papers 2021:17, Lund University, Department of Economics.
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neussüs & Michael Razen & Utz Weitzel & Christian Brownlees & Javier Gil-Bazo, 2021. "Non-Standard Errors," Working Papers 1303, Barcelona School of Economics.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Jürgen & Johannesson, Magnus & Kirchler, Michael & Neusüss, Sebastian & Razen, Michael & Weitzel, Utz, 2021. "Non-standard errors," IWH Discussion Papers 11/2021, Halle Institute for Economic Research (IWH).
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neussüs & Michael Razen & Utz Weitzel & Christian T. Brownlees & Javier Gil-Baz, 2021. "Non-standard errors," Economics Working Papers 1807, Department of Economics and Business, Universitat Pompeu Fabra.
      • Albert J. et al. Menkveld, 2021. "Non-Standard Errors," CESifo Working Paper Series 9453, CESifo.
      • Albert J Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Gunther Capelle-Blancard & David Abad-Dí, 2021. "Non-Standard Errors," Post-Print halshs-03500882, HAL.
      • Francesco Franzoni & Roxana Mihet & Markus Leippold & Per Ostberg & Olivier Scaillet & Norman Schürhoff & Oksana Bashchenko & Nicola Mano & Michele Pelli, 2022. "Non-Standard Errors," Swiss Finance Institute Research Paper Series 22-09, Swiss Finance Institute.
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Edwin Baidoo & Michael Frömmel & et al, 2021. "Non-Standard Errors," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1032, Ghent University, Faculty of Economics and Business Administration.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Hasse, Jean-Baptiste & e.a.,, 2023. "Non-Standard Errors," LIDAM Reprints LFIN 2023002, Université catholique de Louvain, Louvain Finance (LFIN).
      • Moinas, Sophie & Declerck, Fany & Menkveld, Albert J. & Dreber, Anna, 2023. "Non-Standard Errors," TSE Working Papers 23-1451, Toulouse School of Economics (TSE).
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Kirchler, Michael & Neusüß, Sebastian & Razen, Michael & Weitzel, Utz & Abad-Díaz, David & Abudy, Menac, 2024. "Nonstandard errors," LSE Research Online Documents on Economics 123002, London School of Economics and Political Science, LSE Library.
      • Albert Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüß & Michael Razen & Utz Weitzel & David Abad-Díaz & Tobias Adrian & Yacine Ai, 2024. "Nonstandard Errors," Post-Print hal-04676112, HAL.
      • Menkveld, A. & Dreber, A. & Holzmeister, F. & Huber, J. & Johannesson, M. & Kirchler, M. & Neusüss, S. & Razen, M. & Neusüss, S. & Neusüss, S., 2021. "Non-Standard Errors," Cambridge Working Papers in Economics 2182, Faculty of Economics, University of Cambridge.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Jürgen & Johannesson, Magnus & Kirchler, Michael & Neusüss, Sebastian & Razen, Michael & Weitzel, Utz, 2021. "Non-standard errors," SAFE Working Paper Series 327, Leibniz Institute for Financial Research SAFE.
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Jürgen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & David Abad-Dí­az & Menachem Abudy & Tobi, 2021. "Non-Standard Errors," Working Papers 2021-31, Faculty of Economics and Statistics, Universität Innsbruck.
      • Ferrara, Gerardo & Jurkatis, Simon, 2021. "Non-standard errors," Bank of England working papers 955, Bank of England.
      • Ciril Bosch-Rosa & Bernhard Kassner, 2023. "Non-Standard Errors," Rationality and Competition Discussion Paper Series 385, CRC TRR 190 Rationality and Competition.
      • Albert J Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Gunther Capelle-Blancard & David Abad-Dí, 2021. "Non-Standard Errors," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03500882, HAL.
      • Menkveld, A. & Dreber, A. & Holzmeister, F. & Huber, J. & Johannesson, M. & Kirchler, M. & Neusüss, S. & Razen, M. & Neusüss, S. & Neusüss, S., 2021. "Non-Standard Errors," Janeway Institute Working Papers 2112, Faculty of Economics, University of Cambridge.
      • Wolff, Christian & Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Kirchler, Michael & Neusüess, Sebastian & Razen, Michael & Weitzel, Utz, 2021. "Non-Standard Errors," CEPR Discussion Papers 16751, C.E.P.R. Discussion Papers.
    12. Oliver Schilke & Sheen S. Levine & Olenka Kacperczyk & Lynne G. Zucker, 2019. "Call for Papers-Special Issue on Experiments in Organizational Theory," Organization Science, INFORMS, vol. 30(1), pages 232-234, February.
    13. Dreber, Anna & Johannesson, Magnus, 2023. "A framework for evaluating reproducibility and replicability in economics," Ruhr Economic Papers 1055, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    15. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    16. Burlig, Fiona, 2018. "Improving transparency in observational social science research: A pre-analysis plan approach," Economics Letters, Elsevier, vol. 168(C), pages 56-60.
    17. Mark J. McCabe & Frank Mueller-Langer, 2019. "Does Data Disclosure Increase Citations? Empirical Evidence from a Natural Experiment in Leading Economics Journals," JRC Working Papers on Digital Economy 2019-02, Joint Research Centre.
    18. Maurizio Canavari & Andreas C. Drichoutis & Jayson L. Lusk & Rodolfo M. Nayga, Jr., 2018. "How to run an experimental auction: A review of recent advances," Working Papers 2018-5, Agricultural University of Athens, Department Of Agricultural Economics.
    19. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    20. Oliver Braganza, 2020. "A simple model suggesting economically rational sample-size choice drives irreproducibility," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:67:y:2021:i:10:p:6174-6197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.