IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i3p1616-1638.html
   My bibliography  Save this article

Interpretable Optimal Stopping

Author

Listed:
  • Dragos Florin Ciocan

    (European Institute of Business Administration (INSEAD), 77305 Fontainebleau, France)

  • Velibor V. Mišić

    (Anderson School of Management, University of California, Los Angeles, Los Angeles, California 90095)

Abstract

Optimal stopping is the problem of deciding when to stop a stochastic system to obtain the greatest reward, arising in numerous application areas such as finance, healthcare, and marketing. State-of-the-art methods for high-dimensional optimal stopping involve approximating the value function or the continuation value and then using that approximation within a greedy policy. Although such policies can perform very well, they are generally not guaranteed to be interpretable; that is, a decision maker may not be able to easily see the link between the current system state and the policy’s action. In this paper, we propose a new approach to optimal stopping wherein the policy is represented as a binary tree, in the spirit of naturally interpretable tree models commonly used in machine learning. We show that the class of tree policies is rich enough to approximate the optimal policy. We formulate the problem of learning such policies from observed trajectories of the stochastic system as a sample average approximation (SAA) problem. We prove that the SAA problem converges under mild conditions as the sample size increases but that, computationally, even immediate simplifications of the SAA problem are theoretically intractable. We thus propose a tractable heuristic for approximately solving the SAA problem by greedily constructing the tree from the top down. We demonstrate the value of our approach by applying it to the canonical problem of option pricing, using both synthetic instances and instances using real Standard & Poor’s 500 Index data. Our method obtains policies that (1) outperform state-of-the-art noninterpretable methods, based on simulation regression and martingale duality, and (2) possess a remarkably simple and intuitive structure.

Suggested Citation

  • Dragos Florin Ciocan & Velibor V. Mišić, 2022. "Interpretable Optimal Stopping," Management Science, INFORMS, vol. 68(3), pages 1616-1638, March.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1616-1638
    DOI: 10.1287/mnsc.2020.3592
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.3592
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.3592?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. David A. Goldberg & Yilun Chen, 2018. "Polynomial time algorithm for optimal stopping with fixed accuracy," Papers 1807.02227, arXiv.org, revised May 2024.
    4. Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
    5. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    6. Daniel Adelman & Adam J. Mersereau, 2008. "Relaxations of Weakly Coupled Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 56(3), pages 712-727, June.
    7. David B. Brown & James E. Smith & Peng Sun, 2010. "Information Relaxations and Duality in Stochastic Dynamic Programs," Operations Research, INFORMS, vol. 58(4-part-1), pages 785-801, August.
    8. Miles Lubin & Iain Dunning, 2015. "Computing in Operations Research Using Julia," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 238-248, May.
    9. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    10. Nan Chen & Paul Glasserman, 2007. "Additive and multiplicative duals for American option pricing," Finance and Stochastics, Springer, vol. 11(2), pages 153-179, April.
    11. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    12. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    13. Dimitris Bertsimas & Vivek F. Farias & Nikolaos Trichakis, 2013. "Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation," Operations Research, INFORMS, vol. 61(1), pages 73-87, February.
    14. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    2. Zineb El Filali Ech-Chafiq & Pierre Henry Labordère & Jérôme Lelong, 2023. "Pricing Bermudan options using regression trees/random forests," Post-Print hal-03436046, HAL.
    3. Notz, Pascal M. & Pibernik, Richard, 2024. "Explainable subgradient tree boosting for prescriptive analytics in operations management," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1119-1133.
    4. Goerigk, Marc & Hartisch, Michael, 2023. "A framework for inherently interpretable optimization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1312-1324.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vijay V. Desai & Vivek F. Farias & Ciamac C. Moallemi, 2012. "Pathwise Optimization for Optimal Stopping Problems," Management Science, INFORMS, vol. 58(12), pages 2292-2308, December.
    2. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    3. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    4. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    5. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    6. Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
    7. Helin Zhu & Fan Ye & Enlu Zhou, 2015. "Fast estimation of true bounds on Bermudan option prices under jump-diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1885-1900, November.
    8. David B. Brown & Martin B. Haugh, 2017. "Information Relaxation Bounds for Infinite Horizon Markov Decision Processes," Operations Research, INFORMS, vol. 65(5), pages 1355-1379, October.
    9. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    10. Christian Bender & Christian Gaertner & Nikolaus Schweizer, 2016. "Pathwise Iteration for Backward SDEs," Papers 1605.07500, arXiv.org, revised Jun 2016.
    11. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    12. Secomandi, Nicola & Seppi, Duane J., 2014. "Real Options and Merchant Operations of Energy and Other Commodities," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 6(3-4), pages 161-331, July.
    13. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    14. Helin Zhu & Fan Ye & Enlu Zhou, 2013. "Fast Estimation of True Bounds on Bermudan Option Prices under Jump-diffusion Processes," Papers 1305.4321, arXiv.org.
    15. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    16. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Variance Reduction Applied to Machine Learning for Pricing Bermudan/American Options in High Dimension," Papers 1903.11275, arXiv.org, revised Dec 2019.
    17. Santiago R. Balseiro & David B. Brown, 2019. "Approximations to Stochastic Dynamic Programs via Information Relaxation Duality," Operations Research, INFORMS, vol. 67(2), pages 577-597, March.
    18. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    19. Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
    20. Mark S. Joshi, 2016. "Analysing the bias in the primal-dual upper bound method for early exercisable derivatives: bounds, estimation and removal," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 519-533, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:3:p:1616-1638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.