IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1939.html
   My bibliography  Save this paper

The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing

Author

Listed:
  • Shan Huang
  • Michael Allan Ribers
  • Hannes Ullrich

Abstract

Large-scale data show promise to provide efficiency gains through individualized risk predictions in many business and policy settings. Yet, assessments of the degree of data-enabled efficiency improvements remain scarce. We quantify the value of the availability of a variety of data combinations for tackling the policy problem of curbing antibiotic resistance, where the reduction of inefficient antibiotic use requires improved diagnostic prediction. Fousing on antibiotic prescribing for suspected urinary tract infections in primary care in Denmark, we link individual-level administrative data with microbiological laboratory test outcomes to train a machine learning algorithm predicting bacterial test results. For various data combinations, we assess out of sample prediction quality and efficiency improvements due to prediction-based prescription policies. The largest gains in prediction quality can be achieved using simple characteristics such as patient age and gender or patients’ health care data. However, additional patient background data lead to further incremental policy improvements even though gains in prediction quality are small. Our findings suggest that evaluating prediction quality against the ground truth only may not be sufficient to quantify the potential for policy improvements.

Suggested Citation

  • Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1939
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.814285.de/dp1939.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skill," Papers 2011.11017, arXiv.org.
    2. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ziad Obermeyer, 2015. "Prediction Policy Problems," American Economic Review, American Economic Association, vol. 105(5), pages 491-495, May.
    3. Aaron Chalfin & Oren Danieli & Andrew Hillis & Zubin Jelveh & Michael Luca & Jens Ludwig & Sendhil Mullainathan, 2016. "Productivity and Selection of Human Capital with Machine Learning," American Economic Review, American Economic Association, vol. 106(5), pages 124-127, May.
    4. Mohsen Bayati & Mark Braverman & Michael Gillam & Karen M Mack & George Ruiz & Mark S Smith & Eric Horvitz, 2014. "Data-Driven Decisions for Reducing Readmissions for Heart Failure: General Methodology and Case Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    5. Michael Allan Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Papers 1906.03044, arXiv.org.
    6. Maximilian Schäfer & Geza Sapi & Szabolcs Lorincz, 2018. "The Effect of Big Data on Recommendation Quality: The Example of Internet Search," Discussion Papers of DIW Berlin 1730, DIW Berlin, German Institute for Economic Research.
    7. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    8. Justine S. Hastings & Mark Howison & Sarah E. Inman, 2020. "Predicting high-risk opioid prescriptions before they are given," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(4), pages 1917-1923, January.
    9. Jörg Claussen & Christian Peukert & Ananya Sen, 2019. "The Editor vs. the Algorithm: Returns to Data and Externalities in Online News," CESifo Working Paper Series 8012, CESifo.
    10. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Allan Ribers & Hannes Ullrich, 2020. "Machine Predictions and Human Decisions with Variation in Payoffs and Skill," CESifo Working Paper Series 8702, CESifo.
    2. Michael A. Ribers & Hannes Ullrich, 2019. "Battling Antibiotic Resistance: Can Machine Learning Improve Prescribing?," Discussion Papers of DIW Berlin 1803, DIW Berlin, German Institute for Economic Research.
    3. Huang, Shan & Ribers, Michael Allan & Ullrich, Hannes, 2022. "Assessing the value of data for prediction policies: The case of antibiotic prescribing," Economics Letters, Elsevier, vol. 213(C).
    4. Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
    5. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.
    6. Ballestar, María Teresa & Doncel, Luis Miguel & Sainz, Jorge & Ortigosa-Blanch, Arturo, 2019. "A novel machine learning approach for evaluation of public policies: An application in relation to the performance of university researchers," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
    7. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Marie-Pierre Dargnies & Rustamdjan Hakimov & Dorothea Kübler, 2022. "Aversion to Hiring Algorithms: Transparency, Gender Profiling, and Self-Confidence," CESifo Working Paper Series 9968, CESifo.
    9. Kesler, Reinhold & Kummer, Michael E. & Schulte, Patrick, 2019. "Competition and privacy in online markets: Evidence from the mobile app industry," ZEW Discussion Papers 19-064, ZEW - Leibniz Centre for European Economic Research.
    10. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    11. MARTENS Bertin, 2020. "An economic perspective on data and platform market power," JRC Working Papers on Digital Economy 2020-09, Joint Research Centre.
    12. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
    13. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
    14. de Blasio, Guido & D'Ignazio, Alessio & Letta, Marco, 2022. "Gotham city. Predicting ‘corrupted’ municipalities with machine learning," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    15. McKenzie, David & Sansone, Dario, 2019. "Predicting entrepreneurial success is hard: Evidence from a business plan competition in Nigeria," Journal of Development Economics, Elsevier, vol. 141(C).
    16. Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
    17. Runshan Fu & Yan Huang & Param Vir Singh, 2020. "Crowd, Lending, Machine, and Bias," Papers 2008.04068, arXiv.org.
    18. Monica Andini & Emanuele Ciani & Guido de Blasio & Alessio D'Ignazio & Viola Salvestrini, 2017. "Targeting policy-compliers with machine learning: an application to a tax rebate programme in Italy," Temi di discussione (Economic working papers) 1158, Bank of Italy, Economic Research and International Relations Area.
    19. Guido de Blasio & Alessio D'Ignazio & Marco Letta, 2020. "Predicting Corruption Crimes with Machine Learning. A Study for the Italian Municipalities," Working Papers 16/20, Sapienza University of Rome, DISS.
    20. Ehsan Valavi & Joel Hestness & Newsha Ardalani & Marco Iansiti, 2022. "Time and the Value of Data," Papers 2203.09118, arXiv.org.

    More about this item

    Keywords

    Prediction policy; data combination; machine learning; antibiotic prescribing;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • I11 - Health, Education, and Welfare - - Health - - - Analysis of Health Care Markets
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.