IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v185y2022i2p588-614.html
   My bibliography  Save this article

Closer than they appear: A Bayesian perspective on individual‐level heterogeneity in risk assessment

Author

Listed:
  • Kristian Lum
  • David B. Dunson
  • James Johndrow

Abstract

Risk assessment instruments are used across the criminal justice system to estimate the probability of some future event, such as failure to appear for a court appointment or re‐arrest. The estimated probabilities are then used in making decisions at the individual level. In the past, there has been controversy about whether the probabilities derived from group‐level calculations can meaningfully be applied to individuals. Using Bayesian hierarchical models applied to a large longitudinal dataset from the court system in the state of Kentucky, we analyse variation in individual‐level probabilities of failing to appear for court and the extent to which it is captured by covariates. We find that individuals within the same risk group vary widely in their probability of the outcome. In practice, this means that allocating individuals to risk groups based on standard approaches to risk assessment, in large part, results in creating distinctions among individuals who are not meaningfully different in terms of their likelihood of the outcome. This is because uncertainty about the probability that any particular individual will fail to appear is large relative to the difference in average probabilities among any reasonable set of risk groups.

Suggested Citation

  • Kristian Lum & David B. Dunson & James Johndrow, 2022. "Closer than they appear: A Bayesian perspective on individual‐level heterogeneity in risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(2), pages 588-614, April.
  • Handle: RePEc:bla:jorssa:v:185:y:2022:i:2:p:588-614
    DOI: 10.1111/rssa.12792
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12792
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaming Zeng & Berk Ustun & Cynthia Rudin, 2017. "Interpretable classification models for recidivism prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 689-722, June.
    2. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    3. Jongbin Jung & Connor Concannon & Ravi Shroff & Sharad Goel & Daniel G. Goldstein, 2020. "Simple rules to guide expert classifications," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 771-800, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    2. Shroff, Ravi & Vamvourellis, Konstantinos, 2022. "Pretrial release judgments and decision fatigue," LSE Research Online Documents on Economics 117579, London School of Economics and Political Science, LSE Library.
    3. Jon Kleinberg & Sendhil Mullainathan, 2019. "Simplicity Creates Inequity: Implications for Fairness, Stereotypes, and Interpretability," NBER Working Papers 25854, National Bureau of Economic Research, Inc.
    4. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    5. Dionissi Aliprantis & Hal Martin & Kristen Tauber, 2020. "What Determines the Success of Housing Mobility Programs?," Working Papers 20-36R, Federal Reserve Bank of Cleveland, revised 19 Oct 2022.
    6. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    7. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    8. Daniel Carter & Amelia Acker & Dan Sholler, 2021. "Investigative approaches to researching information technology companies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 655-666, June.
    9. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    10. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    11. Maude Lavanchy & Patrick Reichert & Jayanth Narayanan & Krishna Savani, 2023. "Applicants’ Fairness Perceptions of Algorithm-Driven Hiring Procedures," Journal of Business Ethics, Springer, vol. 188(1), pages 125-150, November.
    12. Ivan A Canay & Magne Mogstad & Jack Mount, 2024. "On the Use of Outcome Tests for Detecting Bias in Decision Making," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(4), pages 2135-2167.
    13. Ratzanyel Rincón, 2023. "Quarterly multidimensional poverty estimates in Mexico using machine learning algorithms/Estimaciones trimestrales de pobreza multidimensional en México mediante algoritmos de aprendizaje de máquina," Estudios Económicos, El Colegio de México, Centro de Estudios Económicos, vol. 38(1), pages 3-68.
    14. Klockmann, Victor & von Schenk, Alicia & Villeval, Marie Claire, 2022. "Artificial intelligence, ethics, and intergenerational responsibility," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 284-317.
    15. Ostheimer, Julia & Chowdhury, Soumitra & Iqbal, Sarfraz, 2021. "An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles," Technology in Society, Elsevier, vol. 66(C).
    16. repec:jdm:journl:v:17:y:2022:i:6:p:1176-1207 is not listed on IDEAS
    17. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    18. Zhang, Han, 2021. "How Using Machine Learning Classification as a Variable in Regression Leads to Attenuation Bias and What to Do About It," SocArXiv 453jk, Center for Open Science.
    19. Daniel Bjorkegren & Joshua E. Blumenstock & Samsun Knight, 2020. "Manipulation-Proof Machine Learning," Papers 2004.03865, arXiv.org.
    20. Anthony Niblett, 2018. "Regulatory Reform in Ontario: Machine Learning and Regulation," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 507, March.
    21. Chen, S. & Doerr, S. & Frost, J. & Gambacorta, L. & Shin, H.S., 2023. "The fintech gender gap," Journal of Financial Intermediation, Elsevier, vol. 54(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:185:y:2022:i:2:p:588-614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.